Different voltage dependence of transient and persistent Na+ currents is compatible with modal-gating hypothesis for sodium channels

1994 ◽  
Vol 71 (6) ◽  
pp. 2562-2565 ◽  
Author(s):  
A. M. Brown ◽  
P. C. Schwindt ◽  
W. E. Crill

1. These experiments tested the hypothesis that the differing voltage dependence of the transient (INa) and persistent (INaP) Na+ currents in neocortical neurons results from the state of inactivation of one type of Na+ channel rather than from the existence of different types of Na+ channels. This question was examined in acutely isolated pyramidal neurons from the sensorimotor cortex of rats by using papain to remove inactivation from INa and comparing the resulting activation curve with that of INaP. 2. In control cells, INaP activated at more negative potentials than INa. Inclusion of papain in the recording pipette removed inactivation from INa and caused the INa activation curve to be shifted leftward to the position of the curve for INaP measured in control cells. Papain greatly increased both INa amplitude and the time to reach peak INa during smaller depolarizations, whereas the difference between control and test currents was reduced during large depolarizations. 3. We conclude that differences in the voltage dependence of INa and INaP activation does not provide sufficient evidence that these currents flow through separate sets of Na+ channels. Instead, our results are consistent with the idea that INaP largely arises from a fraction of the transient Na+ channels that intermittently lose their inactivation.

2000 ◽  
Vol 92 (2) ◽  
pp. 529-529 ◽  
Author(s):  
Lingamaneni Ratnakumari ◽  
Tatyana N. Vysotskaya ◽  
Daniel S. Duch ◽  
Hugh C. Hemmings

Background Despite their key role in the generation and propagation of action potentials in excitable cells, voltage-gated sodium (Na+) channels have been considered to be insensitive to general anesthetics. The authors tested the sensitivity of neuronal Na+ channels to structurally similar anesthetic (1-chloro-1,2,2-trifluorocyclobutane; F3) and nonanesthetic (1,2-dichlorohexafluorocyclobutane; F6) polyhalogenated cyclobutanes by neurochemical and electrophysiologic methods. Methods Synaptosomes (pinched-off nerve terminals) from adult rat cerebral cortex were used to determine the effects of F3 and F6 on 4-aminopyridine- or veratridine-evoked (Na+ channel-dependent) glutamate release (using an enzyme-coupled spectrofluorimetric assay) and increases in intracellular Ca2+ ([Ca2+]i) (using ion-specific spectrofluorimetry). Effects of F3 and F6 on Na+ currents were evaluated directly in rat lumbar dorsal root ganglion neurons by whole-cell patch-clamp recording. Results F3 inhibited glutamate release evoked by 4-aminopyridine (inhibitory concentration of 50% [IC50] = 0.77 mM [approximately 0.8 minimum alveolar concentration (MAC)] or veratridine (IC50 = 0.42 mM [approximately 0.4 MAC]), and veratridine-evoked increases in [Ca2+]i (IC50 = 0.5 mM [approximately 0.5 MAC]) in synaptosomes; F6 had no significant effects up to 0.05 mM (approximately twice the predicted MAC). F3 caused reversible membrane potential-independent inhibition of peak Na+ currents (70+/-9% block at 0.6 mM [approximately 0.6 MAC]), and a hyperpolarizing shift in the voltage-dependence of steady state inactivation in dorsal root ganglion neurons (-21+/-9.3 mV at 0.6 mM). F6 inhibited peak Na+ currents to a lesser extent (16+/-2% block at 0.018 mM [predicted MAC]) and had minimal effects on steady state inactivation. Conclusions The anesthetic cyclobutane F3 significantly inhibited Na+ channel-mediated glutamate release and increases in [Ca2+]i. In contrast, the nonanesthetic cyclobutane F6 had no significant effects at predicted anesthetic concentrations. F3 inhibited dorsal root ganglion neuron Na+ channels with a potency and by mechanisms similar to those of conventional volatile anesthetics; F6 was less effective and did not produce voltage-dependent block. This concordance between anesthetic activity and Na+ channel inhibition supports a role for presynaptic Na+ channels as targets for general anesthetic effects and suggests that shifting the voltage-dependence of Na+ channel inactivation is an important property of volatile anesthetic compounds.


1988 ◽  
Vol 59 (3) ◽  
pp. 778-795 ◽  
Author(s):  
J. R. Huguenard ◽  
O. P. Hamill ◽  
D. A. Prince

1. Na+ conductances have been characterized in rat neocortical neurons from the sensorimotor area. Neurons were obtained by acute dissociation from animals at developmental stages from embryonic day 16 (E16) to postnatal day 50 (P50) to quantify any developmental changes in the kinetic properties of the Na+ conductance. 2. Neurons were divided into two classes, based on morphology, to determine whether there are any cell-type specific differences in Na+ conductances that contribute to the different action potential morphologies seen in current-clamp recordings in vitro. 3. Upon isolation, neurons were voltage clamped using the whole-cell variation of the patch-clamp technology. Both cell types, pyramidal and nonpyramidal, demonstrate large increases in Na+ current density during this developmental period (E16-P50). Normalized conductances were near 10 pS/micron2 in neurons from embryonic animals, and increased 6- to 10-fold during the first 2 wk postnatal. The final conductance reached in pyramidal neurons was higher than in non-pyramidal neurons. 4. We found no differences between the two cell types, pyramidal and nonpyramidal, in the voltage dependence of activation, inactivation kinetics, voltage dependence of steady-state inactivation, and recovery from inactivation. 5. The time course of Na+ current in immature neurons were fit with classical Hodgkin-Huxley kinetics. However, in more mature neurons the kinetics of inactivation became more complicated such that two decay components were required to obtain good fit. The slowly decaying component had a time course 5 to 10 times slower than the fast component. 6. Several procedures were used to reduce the magnitude of Na+ conductance in mature neurons to ensure graded, voltage-dependent inward currents. These included reduced extracellular [Na+], submaximal tetrodotoxin concentrations, and reduced holding potential. Under each of these conditions we were able to verify the observation that Na+ current inactivation occurs with two exponentials. 7. Single-channel Na+ currents were obtained from cell-attached patches. The membrane density of active Na+ channels increases with development, and ensemble averages from mature neurons demonstrated two inactivation processes. The slow inactivation process was accounted for by long-latency single-channel openings of the same amplitude as the short-latency openings. 8. We conclude that there are no kinetic differences in the Na+ channels between cell types. Differences in action potentials are then not explained by differences in Na+ current kinetics, but might be partially explained by the different densities.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 265 (1) ◽  
pp. C171-C177 ◽  
Author(s):  
R. L. Ruff ◽  
D. Whittlesey

The voltage dependence and amplitude of Na+ currents (INa) were studied with the loose-patch voltage-clamp technique on 19 fast-twitch human intercostal skeletal muscle fibers at the endplate border and > 200 microns from the endplate (extrajunctional). The fibers were histochemically classified as fast-twitch oxidative-glycolytic (type IIa, n = 9) or fast-twitch glycolytic (type IIb, n = 10). The voltage dependence of activation and fast and slow inactivation of INa were similar for membrane patches recorded on the endplate border and on extrajunctional membrane for both fiber types. INa was about fivefold larger on the endplate border compared with extrajunctional membrane for both fiber types. Type IIb fibers had larger values of INa and manifest fast inactivation of INa at more negative potentials than type IIa fibers. The difference between type IIa and IIb fibers may enable IIb fibers to operate at higher firing frequencies for brief periods.


1979 ◽  
Vol 73 (1) ◽  
pp. 1-21 ◽  
Author(s):  
J Z Yeh

The interactions of 9-aminoacridine with ionic channels were studied in internally perfused squid axons. The kinetics of block of Na channels with 9-aminoacridine varies depending on the voltage-clamp pulses and the state of gating machinery of Na channels. In an axon with intact h gate, the block exhibits frequency- and voltage-dependent characteristics. However, in the pronase-perfused axon, the frequency-dependent block disappears, whereas the voltage-dependent block remains unchanged. A time-dependent decrease in Na currents indicative of direct block of Na channel by drug molecule follows a single exponential function with a time constant of 2.0 +/- 0.18 and 1.0 +/- 0.19 ms (at 10 degrees C and 80 m V) for 30 and 100 microM 9-aminoacridine, respectively. A steady-state block can be achieved during a single 8-ms depolarizing pulse when the h gate has been removed. The block in the h-gate intact axon can be achieved only with multiple conditioning pulses. The voltage-dependent block suggests that 9-aminoacridine binds to a site located halfway across the membrane with a dissociation constant of 62 microM at 0 m V. 9-Aminoacridine also blocks K channels, and the block is time- and voltage-dependent.


2004 ◽  
Vol 92 (5) ◽  
pp. 2831-2843 ◽  
Author(s):  
Fatemeh S. Afshari ◽  
Krzysztof Ptak ◽  
Zayd M. Khaliq ◽  
Tina M. Grieco ◽  
N. Traverse Slater ◽  
...  

Action potential firing rates are generally limited by the refractory period, which depends on the recovery from inactivation of voltage-gated Na channels. In cerebellar Purkinje neurons, the kinetics of Na channels appear specialized for rapid firing. Upon depolarization, an endogenous open-channel blocker rapidly terminates current flow but prevents binding of the “fast” inactivation gate. Upon repolarization, unbinding of the blocker produces “resurgent” Na current while allowing channels to recover rapidly. Because other cerebellar neurons, including granule cells, unipolar brush cells, and neurons of the cerebellar nuclei, also fire rapidly, we tested whether these cells might also express Na channels with resurgent kinetics. Neurons were acutely isolated from mice and rats, and TTX-sensitive Na currents were recorded under voltage clamp. Unlike Purkinje cells, the other cerebellar neurons produced only tiny resurgent currents in solutions optimized for voltage-clamping Na currents (50 mM Na+; Co2+ substitution for Ca2+). Under more physiological ionic conditions (155 mM Na+; 2 mM Ca2+ with 0.03 mM Cd2+), however, granule cells, unipolar brush cells, and cerebellar nuclear cells all produced robust resurgent currents. The increase in resurgent current, which was greater than predicted by the Goldman-Hodgkin-Katz equation, appeared to result from a combination of knock-off of open-channel blockers by permeating ions as well as relief of divalent block at negative potentials. These results indicate that resurgent current is typical of many cerebellar neurons and suggest that rapid open-channel block and unblock may be a widespread mechanism for restoration of Na channel availability in rapidly firing neurons.


2013 ◽  
Vol 109 (6) ◽  
pp. 1600-1613 ◽  
Author(s):  
Jessica Helm ◽  
Gulcan Akgul ◽  
Lonnie P. Wollmuth

The input, processing, and output characteristics of inhibitory interneurons help shape information flow through layers 2/3 of the visual cortex. Parvalbumin (PV)-positive interneurons modulate and synchronize the gain and dynamic responsiveness of pyramidal neurons. To define the diversity of PV interneurons in layers 2/3 of the developing visual cortex, we characterized their passive and active membrane properties. Using Ward's and k-means multidimensional clustering, we identified four PV interneuron subgroups. The most notable difference between the subgroups was their firing patterns in response to moderate stimuli just above rheobase. Two subgroups showed regular and continuous firing at all stimulus intensities above rheobase. The difference between these two continuously firing subgroups was that one fired at much higher frequencies and transitioned into this high-frequency firing rate at or near rheobase. The two other subgroups showed irregular, stuttering firing patterns just above rheobase. Both of these subgroups typically transitioned to regular and continuous firing at intense stimulations, but one of these subgroups, the strongly stuttering subgroup, showed irregular firing across a wider range of stimulus intensities and firing frequencies. The four subgroups also differed in excitatory synaptic input, providing independent support for the classification of subgroups. The subgroups of PV interneurons identified here would respond differently to inputs of varying intensity and frequency, generating diverse patterns of PV inhibition in the developing neural circuit.


1992 ◽  
Vol 99 (1) ◽  
pp. 1-20 ◽  
Author(s):  
G K Wang ◽  
S Y Wang

Batrachotoxin (BTX)-modified Na+ currents were characterized in GH3 cells with a reversed Na+ gradient under whole-cell voltage clamp conditions. BTX shifts the threshold of Na+ channel activation by approximately 40 mV in the hyperpolarizing direction and nearly eliminates the declining phase of Na+ currents at all voltages, suggesting that Na+ channel inactivation is removed. Paradoxically, the steady-state inactivation (h infinity) of BTX-modified Na+ channels as determined by a two-pulse protocol shows that inactivation is still present and occurs maximally near -70 mV. About 45% of BTX-modified Na+ channels are inactivated at this voltage. The development of inactivation follows a sum of two exponential functions with tau d(fast) = 10 ms and tau d(slow) = 125 ms at -70 mV. Recovery from inactivation can be achieved after hyperpolarizing the membrane to voltages more negative than -120 mV. The time course of recovery is best described by a sum of two exponentials with tau r(fast) = 6.0 ms and tau r(slow) = 240 ms at -170 mV. After reaching a minimum at -70 mV, the h infinity curve of BTX-modified Na+ channels turns upward to reach a constant plateau value of approximately 0.9 at voltages above 0 mV. Evidently, the inactivated, BTX-modified Na+ channels can be forced open at more positive potentials. The reopening kinetics of the inactivated channels follows a single exponential with a time constant of 160 ms at +50 mV. Both chloramine-T (at 0.5 mM) and alpha-scorpion toxin (at 200 nM) diminish the inactivation of BTX-modified Na+ channels. In contrast, benzocaine at 1 mM drastically enhances the inactivation of BTX-modified Na+ channels. The h infinity curve reaches minimum of less than 0.1 at -70 mV, indicating that benzocaine binds preferentially with inactivated, BTX-modified Na+ channels. Together, these results imply that BTX-modified Na+ channels are governed by an inactivation process.


2010 ◽  
Vol 104 (3) ◽  
pp. 1625-1634 ◽  
Author(s):  
Aryn H. Gittis ◽  
Setareh H. Moghadam ◽  
Sascha du Lac

To fire at high rates, neurons express ionic currents that work together to minimize refractory periods by ensuring that sodium channels are available for activation shortly after each action potential. Vestibular nucleus neurons operate around high baseline firing rates and encode information with bidirectional modulation of firing rates up to several hundred Hz. To determine the mechanisms that enable these neurons to sustain firing at high rates, ionic currents were measured during firing by using the action potential clamp technique in vestibular nucleus neurons acutely dissociated from transgenic mice. Although neurons from the YFP-16 line fire at rates higher than those from the GIN line, both classes of neurons express Kv3 and BK currents as well as both transient and resurgent Na currents. In the fastest firing neurons, Kv3 currents dominated repolarization at all firing rates and minimized Na channel inactivation by rapidly transitioning Na channels from the open to the closed state. In slower firing neurons, BK currents dominated repolarization at the highest firing rates and sodium channel availability was protected by a resurgent blocking mechanism. Quantitative differences in Kv3 current density across neurons and qualitative differences in immunohistochemically detected expression of Kv3 subunits could account for the difference in firing range within and across cell classes. These results demonstrate how divergent firing properties of two neuronal populations arise through the interplay of at least three ionic currents.


1991 ◽  
Vol 97 (3) ◽  
pp. 499-519 ◽  
Author(s):  
J Tanguy ◽  
J Z Yeh

The state dependence of Na channel modification by batrachotoxin (BTX) was investigated in voltage-clamped and internally perfused squid giant axons before (control axons) and after the pharmacological removal of the fast inactivation by pronase, chloramine-T, or NBA (pretreated axons). In control axons, in the presence of 2-5 microM BTX, a repetitive depolarization to open the channels was required to achieve a complete BTX modification, characterized by the suppression of the fast inactivation and a simultaneous 50-mV shift of the activation voltage dependence in the hyperpolarizing direction, whereas a single long-lasting (10 min) depolarization to +50 mV could promote the modification of only a small fraction of the channels, the noninactivating ones. In pretreated axons, such a single sustained depolarization as well as the repetitive depolarization could induce a complete modification, as evidenced by a similar shift of the activation voltage dependence. Therefore, the fast inactivated channels were not modified by BTX. We compared the rate of BTX modification of the open and slow inactivated channels in control and pretreated axons using different protocols: (a) During a repetitive depolarization with either 4- or 100-ms conditioning pulses to +80 mV, all the channels were modified in the open state in control axons as well as in pretreated axons, with a similar time constant of approximately 1.2 s. (b) In pronase-treated axons, when all the channels were in the slow inactivated state before BTX application, BTX could modify all the channels, but at a very slow rate, with a time constant of approximately 9.5 min. We conclude that at the macroscopic level BTX modification can occur through two different pathways: (a) via the open state, and (b) via the slow inactivated state of the channels that lack the fast inactivation, spontaneously or pharmacologically, but at a rate approximately 500-fold slower than through the main open channel pathway.


1987 ◽  
Vol 89 (2) ◽  
pp. 253-274 ◽  
Author(s):  
T Gonoi ◽  
B Hille

Macroscopic Na currents were recorded from N18 neuroblastoma cells by the whole-cell voltage-clamp technique. Inactivation of the Na currents was removed by intracellular application of proteolytic enzymes, trypsin, alpha-chymotrypsin, papain, or ficin, or bath application of N-bromoacetamide. Unlike what has been reported in squid giant axons and frog skeletal muscle fibers, these treatments often increased Na currents at all test pulse potentials. In addition, removal of inactivation gating shifted the midpoint of the peak Na conductance-voltage curve in the negative direction by 26 mV on average and greatly prolonged the rising phase of Na currents for small depolarizations. Polypeptide toxins from Leiurus quinquestriatus scorpion and Goniopora coral, which slow inactivation in adult nerve and muscle cells, also increase the peak Na conductance and shift the peak conductance curve in the negative direction by 7-10 mV in neuroblastoma cells. Control experiments argue against ascribing the shifts to series resistance artifacts or to spontaneous changes of the voltage dependence of Na channel kinetics. The negative shift of the peak conductance curve, the increase of peak Na currents, and the prolongation of the rise at small depolarization after removal of inactivation are consistent with gating kinetic models for neuroblastoma cell Na channels, where inactivation follows nearly irreversible activation with a relatively high, voltage-independent rate constant and Na channels open only once in a depolarization. As the same kind of experiment does not give apparent shifting of activation and prolongation of the rising phase of Na currents in adult axon and muscle membranes, the Na channels of these other membranes probably open more than once in a depolarization.


Sign in / Sign up

Export Citation Format

Share Document