Glutamate-induced long-term potentiation enhances spontaneous EPSC amplitude but not frequency

1996 ◽  
Vol 75 (5) ◽  
pp. 1909-1918 ◽  
Author(s):  
R. J. Cormier ◽  
P. T. Kelly

1. Many examples of long-term potentiation (LPT) are induced by repetitive electrical stimulation of presynaptic axons. LTP also is induced by direct glutamate iontophoresis (1 M, 1-2 microA, 10 s) onto postsynaptic neurons in hippocampal slices without evoked presynaptic stimulation; this form of LTP is called "ionto-LTP". The studies herein test the hypothesis that ionto-LTP is expressed primarily through postsynaptic mechanisms. 2. Whole cell recordings were used to examine the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in CA1 pyramidal neurons. sEPSCs were composed of an equal mixture of tetrodotoxin (TTX)-insensitive miniature EPSCs and EPSCs that appeared to result from spontaneous action potentials (i.e., TTX-sensitive EPSCs). The detection of all sEPSCs was virtually eliminated by 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM), suggesting that sEPSCs were glutamate-mediated synaptic events. 3. Changes in the amplitude and frequency of sEPSCs were examined during the expression of ionto-LTP to obtain new information about the cellular location of mechanisms involved in synaptic plasticity. Our findings show that ionto-LTP expression results in increased sEPSC amplitude in the absence of lasting increases in sEPSC frequency. 4. Potentiation of sEPSC amplitude without changes in sEPSC frequency has been previously interpreted to be due to postsynaptic mechanisms. Although this interpretation is supported by findings from peripheral synapses, its application to the central nervous system is unclear. We have considered alternative mechanisms. Models based on increased release probability for action potential dependent transmitter release appeared insufficient to explain our results. The most straightforward interpretation of our results is that LTP induced by glutamate iontophoresis on dendrites of CA1 pyramidal neurons is mediated largely by postsynaptic changes.

1988 ◽  
Vol 66 (6) ◽  
pp. 841-844 ◽  
Author(s):  
B. R. Sastry ◽  
J. W. Goh ◽  
P. B. Y. May ◽  
S. S. Chirwa

In guinea pig hippocampal slices, stimulation of stratum radiatum during depolarization (with intracellular current injections) of nonspiking cells (presumed to be glia) in the apical dendritic area of CA1 pyramidal neurons resulted in a subsequent long-term potentiation of intracellularly recorded excitatory postsynaptic potentials as well as extracellularly recorded population spikes in the CA1 area. Tetanic stimulation of stratum radiatum resulted in a subsequent prolonged depolarization of the presumed glial cells, and this depolarization was smaller when the tetanus was given during the presence of 2-amino-5-phosphonovalerate or when the slices were exposed to Ca2+-free medium containing Mn2+ and Mg2+. These results suggest that glial depolarization is involved as one of the steps in generating long-term potentiation.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yuanyuan Xu ◽  
Mike T. Lin ◽  
Xiang-ming Zha

Abstract Increased neural activities reduced pH at the synaptic cleft and interstitial spaces. Recent studies have shown that protons function as a neurotransmitter. However, it remains unclear whether protons signal through a metabotropic receptor to regulate synaptic function. Here, we showed that GPR68, a proton-sensitive GPCR, exhibited wide expression in the hippocampus, with higher expression observed in CA3 pyramidal neurons and dentate granule cells. In organotypic hippocampal slice neurons, ectopically expressed GPR68-GFP was present in dendrites, dendritic spines, and axons. Recordings in hippocampal slices isolated from GPR68−/− mice showed a reduced fiber volley at the Schaffer collateral-CA1 synapses, a reduced long-term potentiation (LTP), but unaltered paired-pulse ratio. In a step-through passive avoidance test, GPR68−/− mice exhibited reduced avoidance to the dark chamber. These findings showed that GPR68 contributes to hippocampal LTP and aversive fear memory.


1999 ◽  
Vol 81 (1) ◽  
pp. 174-183 ◽  
Author(s):  
S. Tekkök ◽  
I. Medina ◽  
K. Krnjević

Tekkök, S., I. Medina, and K. Krnjević. Intraneuronal [Ca2+] changes induced by 2-deoxy-d-glucose in rat hippocampal slices. J. Neurophysiol. 81: 174–183, 1999. Temporary replacement of glucose by 2-deoxyglucose (2-DG; but not sucrose) is followed by long-term potentiation of CA1 synaptic transmission (2-DG LTP), which is Ca2+-dependent and is prevented by dantrolene or N-methyl-d-aspartate (NMDA) antagonists. To clarify the mechanism of action of 2-DG, we monitored [Ca2+]i while replacing glucose with 2-DG or sucrose. In slices (from Wistar rats) kept submerged at 30°C, pyramidal neurons were loaded with [Ca2+]-sensitive fluo-3 or Fura Red. The fluorescence was measured with a confocal microscope. Bath applications of 10 mM 2-DG (replacing glucose for 15 ± 0.38 min, means ± SE) led to a rapid but reversible rise in fluo-3 fluorescence (or drop of Fura Red fluorescence); the peak increase of fluo-3 fluorescence (Δ F/ F 0), measured near the end of 2-DG applications, was by 245 ± 50% ( n = 32). Isosmolar sucrose (for 15–40 min) had a smaller but significant effect (Δ F/ F 0 = 94 ± 14%, n = 10). The 2-DG–induced Δ F/ F 0 was greatly reduced (to 35 ± 15%, n = 16) by d,l-aminophosphono-valerate (50–100 μM) and abolished by 10 μM dantrolene (−4.0 ± 2.9%, n = 11). A substantial, although smaller effect, of 2-DG persisted in Ca2+-free 1 mM ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid (EGTA) medium. Two adenosine antagonists, which do not prevent 2-DG LTP, were also tested; 2-DG–induced Δ F/ F 0 (fluo-3) was not affected by the A1 antagonist 8-cyclopentyl-3,7-dihydro-1,3-dipropyl-1H-purine-2,6-dione (DPCPX 50 nM; 287 ± 38%; n = 20), but it was abolished by the A1/A2 antagonist 8-SPT; 25 ± 29%, n = 19). These observations suggest that 2-DG releases glutamate and adenosine and that the rise in [Ca2+] may be triggered by a synergistic action of glutamate (acting via NMDA receptors) and adenosine (acting via A2b receptors) resulting in Ca2+ release from a dantrolene-sensitive store. The discrepant effects of sucrose and 8-SPT on Δ F/ F 0, on the one hand, and 2-DG LTP, on the other, support other evidence that increases in postsynaptic [Ca2+]i are not essential for 2-DG LTP.


2008 ◽  
Vol 295 (5) ◽  
pp. R1563-R1571 ◽  
Author(s):  
Germaine C. Lowe ◽  
Giamal N. Luheshi ◽  
Sylvain Williams

Prenatal exposure to infection is known to affect brain development and has been linked to increased risk for schizophrenia. The goal of this study was to investigate whether maternal infection and associated fever near term disrupts synaptic transmission in the hippocampus of the offspring. We used LPS to mimic bacterial infection and trigger the maternal inflammatory response in near-term rats. LPS was administered to rats on embryonic days 15 and 16 and hippocampal synaptic transmission was evaluated in the offspring on postnatal days 20–25. Only offspring from rats that showed a fever in response to LPS were tested. Schaffer collateral-evoked field excitatory postsynaptic potentials (fEPSPs) and fiber volleys in CA1 of hippocampal slices appeared smaller in offspring from the LPS group compared with controls, but, when the fEPSPs were normalized to the amplitude of fiber volleys, they were larger in the LPS group. In addition, intrinsic excitability of CA1 pyramidal neurons was heightened, as antidromic field responses in the LPS group were greater than those from control. Short-, but not long-term plasticity was impaired since paired-pulse facilitation of the fEPSP was attenuated in the LPS group, whereas no differences in long-term potentiation were noted. These results suggest that LPS-induced inflammation during pregnancy produces in the offspring a reduction in presynaptic input to CA1 with compensatory enhancements in postsynaptic glutamatergic response and pyramidal cell excitability. Neurodevelopmental disruption triggered by prenatal infection can have profound effects on hippocampal synaptic transmission, likely contributing to the memory and cognitive deficits observed in schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document