Fast-twitch muscle unit properties in different rat medial gastrocnemius muscle compartments

1996 ◽  
Vol 75 (6) ◽  
pp. 2243-2254 ◽  
Author(s):  
C. J. DeRuiter ◽  
A. De Haan ◽  
A. J. Sargeant

1. The effect of muscle unit (MU) localization on physiological properties was investigated within the fast-twitch fatigue-resistant (FR) and fast-fatigable (FF) MU populations of rat medial gastrocnemius (MG) muscle. Single MG MUs were functionally isolated by microdissection of the ventral roots. FR and FF MU properties of the most proximal and distal muscle compartments were compared. The most proximal and distal compartment are subvolumes of the MG innervated by the most proximal and distal primary nerve branch, respectively. A subsample of the isolated units was glycogen depleted and muscle cross sections were stained for glycogen and myosin-adenosinetriphosphatase. 2. It was shown that proximal FF and FR units reached optimum length for force production at shorter muscle lengths compared with the distal FR and FF units. 3. The fast MUs of the proximal compartment had small territories that were located close to and/or within the mixed region (containing type I, IIA, IIX, and IIB fibers) of the muscle. The fast MUs of the distal compartment had greater territories that were located in the more superficial muscle part (containing only type IIX and IIB fibers) and in some cases spanned the entire area of the distal muscle compartment. 4. FR and FF MUs consisted of muscle fibers identified histochemically as type IIX and IIB, respectively. 5. Within each of the FR and FF MU populations, MUs that were located in the most proximal muscle compartment were more resistant to fatigue compared with the units located in the most distal compartment. 6. Cross-sectional fiber areas were smaller for the proximal FR and FF fibers, but specific force did not differ among units. Consequently, when account was taken of the innervation ratio, the proximal FR and FF units produced less force than distal units of the same type. Tetanic forces were 87 +/- 27 (SD) mN (proximal FR), 154 +/- 53 (SD) mN (distal FR), 142 +/- 25 (SD) mN (proximal FF), and 229 +/- 86 (SD) mN (distal FF). 7. The present findings suggest that with increasing demand placed on rat MG during in vivo locomotion, recruitment is likely to proceed from proximal to distal muscle parts within the FR and FF MU populations.

2005 ◽  
Vol 99 (2) ◽  
pp. 739-746 ◽  
Author(s):  
Antonios Kyparos ◽  
Daniel L. Feeback ◽  
Charles S. Layne ◽  
Daniel A. Martinez ◽  
Mark S. F. Clarke

Unloading-induced muscle atrophy occurs in the aging population, bed-ridden patients, and astronauts. This study was designed to determine whether dynamic foot stimulation (DFS) applied to the plantar surface of the rat foot can serve as a countermeasure to soleus muscle atrophy normally observed in hindlimb unloaded (HU) rats. Forty-four mature (6 mo old), male Wistar rats were randomly assigned to ambulatory control, HU alone, HU with active DFS (i.e., plantar contact with active inflation), HU with passive DFS (i.e., plantar contact without active inflation), and HU while wearing a DFS boot with no plantar contact groups. Application of active DFS during HU significantly counteracted the atrophic response by preventing ∼85% of the reduction in type I myofiber cross-sectional area (CSA) in the soleus while preventing ∼57% of the reduction in type I myofiber CSA and 43% of the reduction in type IIA myofiber CSA of the medial gastrocnemius muscle. Wearing of a DFS boot without active inflation prevented myofiber atrophy in the soleus of HU animals in a fashion similar to that observed in HU animals that wore an actively inflated DFS boot. However, when a DFS boot without plantar surface contact was worn during HU, no significant protection from HU-induced myofiber atrophy was observed. These results illustrate that the application of mechanical foot stimulation to the plantar surface of the rat foot is an effective countermeasure to muscle atrophy induced by HU.


1995 ◽  
Vol 79 (6) ◽  
pp. 1855-1861 ◽  
Author(s):  
C. J. De Ruiter ◽  
A. De Haan ◽  
A. J. Sargeant

The most proximal and distal motor nerve branches in the rat medial gastrocnemius innervate discrete muscle compartments dominated by fast-twitch oxidative and fast-twitch glycolytic fibers, respectively. The functional consequences of the difference in oxidative capacity between these compartments were investigated. Wistar rats were anesthetized with pentobarbital sodium (90 mg/kg ip). Changes in force of both compartments during 21 isometric contractions (train duration 200 ms, stimulation frequency 120 Hz, 3 s between contractions) were studied in situ with and without blood flow. Without blood flow, force and phosphocreatine declined to a greater extent in the proximal than the distal compartment compared with the run with intact flow. After the protocol without blood flow, when flow was restored, the time constants for force recovery (which were closely associated to the recovery of phosphocreatine) were 37 +/- 7 (SD) (proximal compartment) and 148 +/- 20 s (distal compartment). It was concluded that the proximal compartment had a four times higher oxidative capacity and, therefore, a superior ability for repeated force production.


1990 ◽  
Vol 68 (5) ◽  
pp. 1938-1944 ◽  
Author(s):  
M. I. Lewis ◽  
G. C. Sieck

The influence of 90 h of acute nutritional deprivation (ND) on the cross-sectional areas of muscle fibers and the contractile and fatigue properties of the adult rat diaphragm were determined. Isometric contractile properties and fatigue resistance of the diaphragm were measured by means of an in vitro nerve-muscle strip preparation. Contractions were evoked by using phrenic nerve stimulation (left hemidiaphragm) or direct muscle stimulation (right hemidiaphragm) in the presence of curare. Acute ND resulted in a 20% reduction in body weight. No significant decrements in diaphragm or soleus weights were noted in the ND animals compared with controls (CTL), whereas the weight of the medial gastrocnemius was reduced by 20% in the ND animals. Peak twitch and tetanic tensions (normalized for the weight of the diaphragm strip) were not reduced in ND compared with CTL animals after either nerve or muscle stimulation. The fatigue index of the diaphragm was significantly reduced in ND animals only after nerve stimulation. After the fatigue test, there was rapid recovery of the additional fatigue noted with nerve stimulation. The proportions of type I and II muscle fibers of the diaphragm were similar in the CTL and ND animals. No differences in diaphragm cross-sectional areas were noted for either type I or II muscle fibers in the CTL and ND animals. It is concluded that acute ND has no effect on diaphragm contractility or morphometry and only an inconsequential influence on diaphragm fatigue.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Glaucia Figueiredo Braggion ◽  
Elisabete Ornelas ◽  
Jurema Carmona Sattin Cury ◽  
Natália Edviges Alves Lima ◽  
Rita C. Aquino ◽  
...  

Introduction. Sarcopenia is a process characterized by reduction in protein mass and muscle strength with increasing age, especially in the postmenopausal period, resulting in functional limitations and with great impact on the physical autonomy of the elderly.Objective. To evaluate the effects of diets with vegetable proteins (VP) or animal proteins (AP) associated with resistance training (RT) on the structural and biochemical parameters of the medial gastrocnemius muscle in Wistar rats with sarcopenia.Methods. An experimental model with ovariectomized rats was used to induce sarcopenia and resistance training. The histochemical technique was used for the typing of muscle fibers, the cross-sectional area of myocytes, and volume densities of myocytes and interstitium; the technique of Picrosirius stain was used to highlight the collagen fibers.Results. The VP diet was not able to minimize the effects of sarcopenia in the medial gastrocnemius of sedentary animals and when associated with RT, it promoted maintenance of the CSA, attenuating the atrophy of type IIB fibers in the medial gastrocnemius. The AP diet in sedentary animals protected the type I fibers. When combined with RT, the AP promoted muscle remodeling, with reduction in volume density of type I and IIA fibers, and increase of IIB fibers, together with an increase in collagen volume density.Conclusion. The data suggest a tendency to better results of hypertrophy in animal groups that consumed the AP diet, even the sedentary animals, although more evident in those trained.


1992 ◽  
Vol 73 (2) ◽  
pp. S44-S50 ◽  
Author(s):  
X. J. Musacchia ◽  
J. M. Steffen ◽  
R. D. Fell ◽  
M. J. Dombrowski ◽  
V. W. Oganov ◽  
...  

The vastus medialis (VM) from rats after 14 days of microgravity on COSMOS 2044 (F) was compared with VM from tail-suspended hindlimb-unloaded rats (T) and ground controls, including vivarium (V), synchronous (S), and basal (B) animals. The VM is composed chiefly of fast-twitch fibers; however, it contains a deep portion closer to the bone with mixed slow- and fast-twitch fibers. In the mixed-fiber portion, type I and II fiber areas were significantly reduced in F animals. In the homogeneous portion with chiefly fast-twitch fibers, F rats also showed reductions in cross-sectional areas compared with T, V, and B but not S rats. Fiber densities (fibers/mm2) were greatest in VM from F rats. Capillary density changes paralleled fiber density changes. F animals have significantly greater density of capillaries in the mixed-fiber portion. Concentrations of protein, RNA, and DNA were highest in V controls, whereas F rats had the lowest level of total RNA. Lactate dehydrogenase activity, one measure of anaerobic capacity, was greater in F than in S rats. Citrate synthase activity, a measure of oxidative capacity, showed no significant differences between groups. Although triglyceride stores of VM were greater in F than in T rats, there were no significant differences from any of the control groups. It was concluded that VM wet weights may be a less sensitive measure of atrophy than the fiber area measurements. Fiber area decreases and fiber density increases in F animals were quantitatively comparable to those in soleus and extensor digitorum longus after 7 days of weightless flight in Spacelab 3. Our results suggest that VM shows measurable responses to weightlessness.


1997 ◽  
Vol 200 (3) ◽  
pp. 523-529
Author(s):  
H P Buschman ◽  
W J van der Laarse ◽  
G J Stienen ◽  
G Elzinga

The origin of the threefold variation found previously in isometric force normalized to cross-sectional area of single fast-twitch tibialis anterior muscle fibres of the frog Rana temporaria was studied by using (1) a strictly defined stimulus protocol, and (2) influencing the condition of the frog using artificial hibernation. Variation in normalized force was found to be influenced by the length of the rest period between tetani. After a long rest (> 6h), tetanic force production was less than for a tetanus produced after 1 h. The length of the rest period accounted for a factor of 1.24 of the total variation in normalized force. The condition of the frog also influenced normalized force production. Little variation in normalized force was observed between different fibres from the same animal, whereas a significant difference was found between animals. After artificial hibernation, force normalized to cross-sectional area remained unchanged, but force normalized to dry mass per unit length increased; the total variation increased from a factor of 1.37 to a factor of 1.64. Force normalized to muscle protein mass per unit length, however, was not affected by artificial hibernation. We conclude that variation in normalized tetanic force can be partly reduced by standardization of the stimulation protocol and normalization to protein content per unit length.


1983 ◽  
Vol 245 (2) ◽  
pp. H368-H374 ◽  
Author(s):  
I. H. Sarelius ◽  
L. C. Maxwell ◽  
S. D. Gray ◽  
B. R. Duling

We determined muscle fiber type and capillarity in cremaster muscle samples from rats and hamsters of different ages. Histochemical estimation of oxidative capacity was made from the activity of either nicotinamide dinucleotide tetrazolium reductase (NADH-TR) or succinic dehydrogenase (SDH), and fibers were termed fast or slow from myofibrillar ATPase activity. Fibers were classified as type I (low ATPase, high NADH-TR/SDH), type IIa (high ATPase, high SDH/NADH-TR), type IIb (high ATPase, low SDH/NADH-TR), or type IIc (no acid reversal of ATPase, high NADH-TR). Type IIb fibers accounted for 60-80% of the muscle area in both species at all ages. The principal change with maturation was muscle fiber hypertrophy. Mean cross-sectional fiber area increased from 488 +/- 70 (SE) and 453 +/- 19 micron2 in young hamsters and rats, respectively, to 1,255 +/- 99 and 1,540 +/- 101 micron2 in adults. Capillary density (no. of capillaries/mm2 tissue) paralleled fiber hypertrophy; it decreased significantly with maturation from 684 +/- 60 (SE) to 228 +/- 26/mm2 in hamsters and from 341 +/- 15 to 213 +/- 15/mm2 in rats. In vitro estimates of capillary density are compared with previously obtained in vivo data (31), and sources of error are identified. We conclude that reported differences in microvascular function in the cremaster muscle in vivo during maturation or between species cannot be ascribed to changes in muscle composition.


1996 ◽  
Vol 81 (2) ◽  
pp. 933-942 ◽  
Author(s):  
C. J. De Ruiter ◽  
P. E. Habets ◽  
A. de Haan ◽  
A. J. Sargeant

The purpose of the present study was to investigate to what extent fast-twitch IIX and IIB fiber recruitment was related to the natural existing muscle compartments (subvolumes of muscle innervated by different primary nerve branches) in rat medial gastrocnemius. Three groups (n = 6) of rats trotted on a motor-driven treadmill (20 degrees incline) at different speeds. A fourth group served as controls, and a fifth group received in situ electrical stimulation of all medial gastrocnemius muscle fibers. Postexercise glycogen levels (periodic acid-Schiff staining intensities) were made. Running caused more and in situ stimulation caused less glycogen breakdown in the proximal IIX and IIB fibers compared with the fibers of the same type in the most distal compartment. Furthermore, the boundaries of the most distal compartment could often be recognized in the periodic acid-Schiff-stained cross sections. It was concluded that during running the proximal IIX and IIB fibers were recruited to a greater extent (and at lower treadmill speeds) compared with the distal IIX and IIB fibers, respectively.


1987 ◽  
Vol 63 (3) ◽  
pp. 1076-1082 ◽  
Author(s):  
G. C. Sieck ◽  
R. D. Sacks ◽  
C. E. Blanco

The oxidative capacity and cross-sectional area of muscle fibers were compared between the costal and crural regions of the cat diaphragm and across the abdominal-thoracic extent of the muscle. Succinate dehydrogenase (SDH) activity of individual fibers was quantified using a microphotometric procedure implemented on an image-processing system. In both costal and crural regions, population distributions of SDH activities were unimodal for both type I and II fibers. The continuous distribution of SDH activities for type II fibers indicated that no clear threshold exists for the subclassification of fibers based on differences in oxidative capacity (e.g., the classification of fast-twitch glycolytic and fast-twitch oxidative glycolytic fiber types). No differences in either SDH activity or cross-sectional area were noted between fiber populations of the costal and crural regions. Differences in SDH activity and cross-sectional area were noted, however, between fiber populations located on the abdominal and thoracic sides of the costal region. Both type I and II fibers on the abdominal side of the costal diaphragm were larger and more oxidative than comparable fibers on the thoracic side.


2015 ◽  
Vol 309 (2) ◽  
pp. R128-R137 ◽  
Author(s):  
Hiroaki Eshima ◽  
David C. Poole ◽  
Yutaka Kano

In Type 1 diabetes, skeletal muscle resting intracellular Ca2+ concentration ([Ca2+]i) homeostasis is impaired following muscle contractions. It is unclear to what degree this behavior is contingent upon fiber type and muscle oxygenation conditions. We tested the hypotheses that: 1) the rise in resting [Ca2+]i evident in diabetic rat slow-twitch (type I) muscle would be exacerbated in fast-twitch (type II) muscle following contraction; and 2) these elevated [Ca2+]i levels would relate to derangement of microvascular partial pressure of oxygen (PmvO2) rather than sarcoplasmic reticulum dysfunction per se. Adult male Wistar rats were divided randomly into diabetic (DIA: streptozotocin ip) and healthy (CONT) groups. Four weeks later extensor digitorum longus (EDL, predominately type II fibers) and soleus (SOL, predominately type I fibers) muscle contractions were elicited by continuous electrical stimulation (120 s, 100 Hz). Ca2+ imaging was achieved using fura 2-AM in vivo (i.e., circulation intact). DIA increased fatigability in EDL ( P < 0.05) but not SOL. In recovery, SOL [Ca2+]i either returned to its resting baseline within 150 s (CONT 1.00 ± 0.02 at 600 s) or was not elevated in recovery at all (DIA 1.03 ± 0.02 at 600 s, P > 0.05). In recovery, EDL CONT [Ca2+]i also decreased to values not different from baseline (1.06 ± 0.01, P > 0.05) at 600 s. In marked contrast, EDL DIA [Ca2+]i remained elevated for the entire recovery period (i.e., 1.23 ± 0.03 at 600 s, P < 0.05). The inability of [Ca2+]i to return to baseline in EDL DIA was not associated with any reduction of SR Ca2+-ATPase (SERCA) 1 or SERCA2 protein levels (both increased 30–40%, P < 0.05). However, PmvO2 recovery kinetics were markedly slowed in EDL such that mean PmvO2 was substantially depressed (CONT 27.9 ± 2.0 vs. DIA 18.4 ± 2.0 Torr, P < 0.05), and this behavior was associated with the elevated [Ca2+]i. In contrast, this was not the case for SOL ( P > 0.05) in that neither [Ca2+]i nor PmvO2 were deranged in recovery with DIA. In conclusion, recovery of [Ca2+]i homeostasis is impaired in diabetic rat fast-twitch but not slow-twitch muscle in concert with reduced PmvO2 pressures.


Sign in / Sign up

Export Citation Format

Share Document