Neural processing of stereopsis as a function of viewing distance in primate visual cortical area V1

1996 ◽  
Vol 76 (5) ◽  
pp. 2872-2885 ◽  
Author(s):  
Y. Trotter ◽  
S. Celebrini ◽  
B. Stricanne ◽  
S. Thorpe ◽  
M. Imbert

1. The influence of viewing distance on disparity selectivity was investigated in area V1 of behaving monkeys. While the animals performed a fixation task, cortical cells were recorded extracellularly in the foveal representation of the visual field. Disparity selectivity was assessed by using static random dot stereograms (RDSs) through red/green filters flashed over the central fixation target. To determine the influence of the viewing distance, a color video monitor was positioned at fixed distances of 20, 40, or 80 cm. The same RDSs with the same angular size of dots were used at the three distances. 2. Disparity sensitivity was tested on 139 cells, of which 78 were analyzed at two or more distances and the rest (61) at a single distance. When disparity selectivity was analyzed at a given distance, about half the cells were found to be selective at 40 or 80 cm, but only a third at 20 cm. Near cells were > or = 1.5 times more common than far cells at all three distances. The latency distribution of the responses of disparity-selective (DS) cells was similar at all three distances, with a mean distribution centered around 60 ms. 3. Changing the viewing distance drastically affected the neural activity of the V1 neurons. The visual responsiveness of 60 of 78 cells (77%) was significantly changed. Disparity selectivity could be present at a given distance and absent at other(s), with often a loss of visual response. This emergence of disparity coding was the strongest effect (28 of 78 or 36%) and occurred more frequently from short to long distances. Among the cells that remained disparity insensitive at all recorded distances (31 of 78 or 40%), about half also showed modulations of the amplitude of the visual response. For cells that remained DS at all recorded distances (13 of 78 or 17%), changing the viewing distance also affected the sharpness (or magnitude) of disparity coding in terms of level of visual responsiveness and those changes were often combined with variations in tuning width. In only two cells did the peak of selectivity type change. Finally, the activity of four DS cells was not affected at all by the viewing distance. 4. Another effect concerned the level of ongoing activity (OA), defined as being the neural activity in darkness preceding the flash of the visual stimulus while the monkey was fixating the small bright target. Changing the viewing distance resulted in significant changes in OA level for more than half of the cells (41 of 78 or 53%). The most common effect was an increase in OA level at the shorter distance. The modulations of both visual responsiveness and OA could occur simultaneously, although they often had opposite signs. Indeed, the two effects were statistically independent of each other, i.e., modulations of visual responses were not related to the level of excitability of the neurons. 5. Control experiments were performed that showed that the effects of changing the viewing distance were not due to the retinal patterns in that the modulations of visual responsiveness were independent of the dot density. Seventeen cells were also tested for a possible effect of vergence by the use of prisms. When there was an effect of distance, it could be closely or partially reproduced by using prisms. These controls, together with the effects observed on OA, strongly suggest that the modulations of neural activity of the V1 neurons by the viewing distance are extraretinal in origin, probably proprioceptive. 6. The modulation of visual responsiveness by the viewing distance in the primary visual cortex indicates that integration of information from both retinal and extraretinal sources can occur early in the visual processing pathway for cortical representation of three-dimensional space. A functional scheme of three-dimensional cortical circuitry is discussed that shows cortical areas where disparity selectivity and modulations of visual activity by the angle of gaze have been described so far.

Author(s):  
R. Oz ◽  
H. Edelman-Klapper ◽  
S. Nivinsky-Margalit ◽  
H. Slovin

AbstractIntra cortical microstimulation (ICMS) in the primary visual cortex (V1) can generate the visual perception of phosphenes and evoke saccades directed to the stimulated location in the retinotopic map. Although ICMS is widely used, little is known about the evoked spatio-temporal patterns of neural activity and their relation to neural responses evoked by visual stimuli or saccade generation. To investigate this, we combined ICMS with Voltage Sensitive Dye Imaging in V1 of behaving monkeys and measured neural activity at high spatial (meso-scale) and temporal resolution. Small visual stimuli and ICMS evoked population activity spreading over few mm that propagated to extrastriate areas. The population responses evoked by ICMS showed faster dynamics and different spatial propagation patterns. Neural activity was higher in trials w/saccades compared with trials w/o saccades. In conclusion, our results uncover the spatio-temporal patterns evoked by ICMS and their relation to visual processing and saccade generation.


2018 ◽  
Vol 285 (1893) ◽  
pp. 20182255 ◽  
Author(s):  
Greta Vilidaite ◽  
Anthony M. Norcia ◽  
Ryan J. H. West ◽  
Christopher J. H. Elliott ◽  
Francesca Pei ◽  
...  

There is increasing evidence for a strong genetic basis for autism, with many genetic models being developed in an attempt to replicate autistic symptoms in animals. However, current animal behaviour paradigms rarely match the social and cognitive behaviours exhibited by autistic individuals. Here, we instead assay another functional domain—sensory processing—known to be affected in autism to test a novel genetic autism model in Drosophila melanogaster . We show similar visual response alterations and a similar development trajectory in Nhe3 mutant flies (total n = 72) and in autistic human participants (total n = 154). We report a dissociation between first- and second-order electrophysiological visual responses to steady-state stimulation in adult mutant fruit flies that is strikingly similar to the response pattern in human adults with ASD as well as that of a large sample of neurotypical individuals with high numbers of autistic traits. We explain this as a genetically driven, selective signalling alteration in transient visual dynamics. In contrast to adults, autistic children show a decrease in the first-order response that is matched by the fruit fly model, suggesting that a compensatory change in processing occurs during development. Our results provide the first animal model of autism comprising a differential developmental phenotype in visual processing.


1997 ◽  
Vol 78 (3) ◽  
pp. 1373-1383 ◽  
Author(s):  
Marc M. Umeno ◽  
Michael E. Goldberg

Umeno, M. M. and Goldberg, M. E. Spatial processing in the monkey frontal eye field. I. Predictive visual responses. J. Neurophysiol. 78: 1373–1383, 1997. Neurons in the lateral intraparietal area and intermediate layers of the superior colliculus show predictive visual responses. They respond before an impending saccade to a stimulus that will be brought into their receptive field by that saccade. In these experiments we sought to establish whether the monkey frontal eye field had a similar predictive response. We recorded from 100 presaccadic frontal eye field neurons (32 visual cells, 48 visuomovement cells, and 20 movement cells) with the use of the classification criteria of Bruce and Goldberg. We studied each cell in a continuous stimulus task, where the monkey made a saccade that brought a recently appearing stimulus into its receptive field. The latency of response in the continuous stimulus task varied from 52 ms before the saccade to 272 ms after the saccade. We classified cells as having predictive visual responses if their latency in the continuous stimulus task was less than the latency of their visual on response to a stimulus in their receptive or movement field as described in a visual fixation task. Thirty-four percent (11 of 32) of the visual cells, 31% (15 of 48) of the visuomovement cells, and no (0 of 20) movement cells showed a predictive visual response. The cells with predictive responses never responded to the stimulus when the monkey did not make the saccade that would bring that stimulus into the receptive field, and never discharged in association with that saccade unless it brought a stimulus into the receptive field. The response in the continuous stimulus task was almost always weaker than the visual on response to a stimulus flashed in the receptive field. Because cells with visual responses but not cells with movement activity alone showed the effect, we conclude that the predictive visual response is a property of the visual processing in the frontal eye field, i.e., a response to the stimulus in the future receptive field. It is not dependent on the actual planning or execution of a saccade to that stimulus. We suggest that the predictive visual mechanism is one in which the brain dynamically calculates the spatial location of objects in terms of desired displacement. This enables the oculomotor system to perform in a spatially accurate manner when there is a dissonance between the retinal location of a target and the saccade necessary to acquire that target. This mechanism does not require an explicit calculation of target position in some supraretinal coordinatesystem.


Author(s):  
Casper J. Erkelens

A picture is a powerful and convenient medium for inducing the illusion that one perceives a real three-dimensional scene. The relative invariance of picture perception across viewing positions has aroused the interest of painters, photographers and visual scientists. Many studies have been devoted to perceptual invariance when pictures are viewed from oblique directions. Invariance across viewing distances has received less attention. This study presents a computational analysis of pictures of perspective scenes taken from different distances between camera and physical objects. Distances and directions of pictorial objects were computed as function of viewing distance to the picture and compared with distances and directions of the physical objects as function of camera position. The computations show that pictorial distance and direction are determined by angular size of the depicted objects. Pictorial distance and direction are independent of camera position, focal length of the lens, and picture size. Ratios of pictorial distances, directions and sizes are constant as function of viewing distance. The constant ratios are proposed as the reason for invariance of picture perception over a range of viewing distances. Reanalysis of distance judgments obtained from the literature shows that perspective space, previously proposed as the model for visual space, is also a good model for pictorial space. The geometry of pictorial space contradicts some conceptions about picture perception.


2018 ◽  
Author(s):  
Greta Vilidaite ◽  
Anthony M. Norcia ◽  
Ryan J. H. West ◽  
Christopher J. H. Elliott ◽  
Francesca Pei ◽  
...  

AbstractThere is increasing evidence for a strong genetic basis for autism, with many genetic models being developed in an attempt to replicate autistic symptoms in animals. However, current animal behaviour paradigms rarely match the social and cognitive behaviours exhibited by autistic individuals. Here we instead assay another functional domain – sensory processing – known to be affected in autism to test a novel genetic autism model in Drosophila melanogaster. We show similar visual response alterations and a similar development trajectory in Nhe3 mutant flies (total N=72) and in autistic human participants (total N=154). We report a dissociation between first- and second-order electrophysiological visual responses to steady-state stimulation in adult mutant fruit flies that is strikingly similar to the response pattern in human adults with ASD as well as that of a large sample of neurotypical individuals with high numbers of autistic traits. We explain this as a genetically driven, selective signalling alteration in transient visual dynamics. In contrast to adults, autistic children show a decrease in the first-order response that is matched by the fruit fly model, suggesting that a compensatory change in processing occurs during development. Our results provide the first animal model of autism comprising a differential developmental phenotype in visual processing.


1998 ◽  
Vol 79 (6) ◽  
pp. 3272-3278 ◽  
Author(s):  
Matthew T. Schmolesky ◽  
Youngchang Wang ◽  
Doug P. Hanes ◽  
Kirk G. Thompson ◽  
Stefan Leutgeb ◽  
...  

Schmolesky, Matthew T., Youngchang Wang, Doug P. Hanes, Kirk G. Thompson, Stefan Leutgeb, Jeffrey D. Schall, and Audie G. Leventhal. Signal timing across the macaque visual system. J. Neurophysiol. 79: 3272–3278, 1998. The onset latencies of single-unit responses evoked by flashing visual stimuli were measured in the parvocellular (P) and magnocellular (M) layers of the dorsal lateral geniculate nucleus (LGNd) and in cortical visual areas V1, V2, V3, V4, middle temporal area (MT), medial superior temporal area (MST), and in the frontal eye field (FEF) in individual anesthetized monkeys. Identical procedures were carried out to assess latencies in each area, often in the same monkey, thereby permitting direct comparisons of timing across areas. This study presents the visual flash-evoked latencies for cells in areas where such data are common (V1 and V2), and are therefore a good standard, and also in areas where such data are sparse (LGNd M and P layers, MT, V4) or entirely lacking (V3, MST, and FEF in anesthetized preparation). Visual-evoked onset latencies were, on average, 17 ms shorter in the LGNd M layers than in the LGNd P layers. Visual responses occurred in V1 before any other cortical area. The next wave of activation occurred concurrently in areas V3, MT, MST, and FEF. Visual response latencies in areas V2 and V4 were progressively later and more broadly distributed. These differences in the time course of activation across the dorsal and ventral streams provide important temporal constraints on theories of visual processing.


2021 ◽  
Author(s):  
Jessy D. Martinez ◽  
Marcus J. Donnelly ◽  
Donald S. Popke ◽  
Daniel Torres ◽  
Sarah Sheskey ◽  
...  

AbstractAltered visual experience during monocular deprivation (MD) profoundly changes in ocular dominance (OD) in the developing primary visual cortex (V1). MD-driven changes in OD are an experimental model of amblyopia, where early-life alterations in vision lead visual disruption in adulthood. Current treatments for amblyopia include patching of the dominant eye, and more recently-developed binocular therapies. However, the relative impact of monocular vs. binocular recovery experiences on recovery of function in V1 is not well understood. Using single-unit recording, we compared how binocular recovery [BR] or reverse occlusion [RO] of identical duration and content affects OD and visual response recovery in mouse binocular V1 after a period of MD. We also tested how BR and RO affected MD-driven alterations of parvalbumin expression, and visually-driven expression of cFos in parvalbumin-positive and negative neurons. Finally, we tested how BR and RO affected recovery of normal visual acuity for the two eyes in the context of visually-driven behavior. We find that BR is quantitatively superior with respect to normalization of V1 neurons’ OD, visually-driven cFos expression, and visual acuity for the two eyes. However, MD-driven changes in the firing rate and response properties of V1 principal neuron and fast-spiking interneuron populations do not recover fully after either BR or RO. Binocular matching of orientation preference also remains disrupted in V1 neurons after both forms of recovery experience. Thus BR and RO, analogs of differing treatment regimens for amblyopia, differentially impact various aspects of visual recovery in a mouse model for amblyopia.Significance StatementAmblyopia resulting from altered childhood eye function is a leading cause of lifelong vision loss. Treatment typically involves patching of the dominant eye (forcing monocular visual experience), and produces only partial recovery of vision. Using a well-established mouse model of amblyopia, we directly compared how two types of visual experiences influence recovery of visual function. Our findings suggest that binocular vs. monocular visual experience differentially effect restoration of normal visual responses in cortical neurons, visually-driven neuronal gene expression, and visual acuity. Understanding how the quality of recovery experience impacts visual system recovery in amblyopia should provide critical insights for clinical strategies for its treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefano Rozzi ◽  
Marco Bimbi ◽  
Alfonso Gravante ◽  
Luciano Simone ◽  
Leonardo Fogassi

AbstractThe ventral part of lateral prefrontal cortex (VLPF) of the monkey receives strong visual input, mainly from inferotemporal cortex. It has been shown that VLPF neurons can show visual responses during paradigms requiring to associate arbitrary visual cues to behavioral reactions. Further studies showed that there are also VLPF neurons responding to the presentation of specific visual stimuli, such as objects and faces. However, it is largely unknown whether VLPF neurons respond and differentiate between stimuli belonging to different categories, also in absence of a specific requirement to actively categorize or to exploit these stimuli for choosing a given behavior. The first aim of the present study is to evaluate and map the responses of neurons of a large sector of VLPF to a wide set of visual stimuli when monkeys simply observe them. Recent studies showed that visual responses to objects are also present in VLPF neurons coding action execution, when they are the target of the action. Thus, the second aim of the present study is to compare the visual responses of VLPF neurons when the same objects are simply observed or when they become the target of a grasping action. Our results indicate that: (1) part of VLPF visually responsive neurons respond specifically to one stimulus or to a small set of stimuli, but there is no indication of a “passive” categorical coding; (2) VLPF neuronal visual responses to objects are often modulated by the task conditions in which the object is observed, with the strongest response when the object is target of an action. These data indicate that VLPF performs an early passive description of several types of visual stimuli, that can then be used for organizing and planning behavior. This could explain the modulation of visual response both in associative learning and in natural behavior.


Author(s):  
Takehito Teraguchi ◽  
Hiromasa Yamashita ◽  
Ken Masamune ◽  
Takeyoshi Dohi ◽  
Hongen Liao

2006 ◽  
Vol 18 (8) ◽  
pp. 1394-1405 ◽  
Author(s):  
Gijs Plomp ◽  
Lichan Liu ◽  
Cees van Leeuwen ◽  
Andreas A. Ioannides

We investigated the process of amodal completion in a same-different experiment in which test pairs were preceded by sequences of two figures. The first of these could be congruent to a global or local completion of an occluded part in the second figure, or a mosaic interpretation of it. We recorded and analyzed the magnetoencephalogram for the second figures. Compared to control conditions, in which unrelated primes were shown, occlusion and mosaic primes reduced the peak latency and amplitude of neural activity evoked by the occlusion patterns. Compared to occlusion primes, mosaic ones reduced the latency but increased the amplitude of evoked neural activity. Processes relating to a mosaic interpretation of the occlusion pattern, therefore, can dominate in an early stage of visual processing. The results did not provide evidence for the presence of a functional “mosaic stage” in completion per se, but characterize the mosaic interpretation as a qualitatively special one that can rapidly emerge in visual processing when context favors it.


Sign in / Sign up

Export Citation Format

Share Document