scholarly journals Gap Junction Effects on Precision and Frequency of a Model Pacemaker Network

2000 ◽  
Vol 83 (2) ◽  
pp. 984-997 ◽  
Author(s):  
Katherine T. Moortgat ◽  
Theodore H. Bullock ◽  
Terrence J. Sejnowski

We investigated the precision of spike timing in a model of gap junction-coupled oscillatory neurons. The model incorporated the known physiology, morphology, and connectivity of the weakly electric fish's high-frequency and extremely precise pacemaker nucleus (Pn). Two neuron classes, pacemaker and relay cells, were each modeled with two compartments containing Hodgkin-Huxley sodium and potassium currents. Isolated pacemaker cells fired periodically, due to a constant current injection; relay cells were silent but slightly depolarized at rest. When coupled by gap junctions to other neurons, a model neuron, like its biological correlate, spiked at frequencies and amplitudes that were largely independent of current injections. The phase distribution in the network was labile to intracellular current injections and to gap junction conductance changes. The model predicts a biologically plausible gap junction conductance of 4–5 nS (200–250 MΩ). This results in a coupling coefficient of ∼0.02, as observed in vitro. Network parameters were varied to test which could improve the temporal precision of oscillations. Increased gap junction conductances and larger numbers of cells (holding total junctional conductance per cell constant) both substantially reduced the coefficient of variation (CV = standard deviation/mean) of relay cell spike times by 74–85% and more, and did so with lower gap junction conductance when cells were contacted axonically compared with somatically. Pacemaker cell CV was only reduced when the probability of contact was increased, and then only moderately: a fivefold increase in the probability of contact reduced CV by 35%. We conclude that gap junctions facilitate synchronization, can reduce CV, are most effective between axons, and that pacemaker cells must have low intrinsic CV to account for the low CV of cells in the biological network.

2000 ◽  
Vol 11 (7) ◽  
pp. 2459-2470 ◽  
Author(s):  
Lucy A. Stebbings ◽  
Martin G. Todman ◽  
Pauline Phelan ◽  
Jonathan P. Bacon ◽  
Jane A. Davies

Members of the innexin protein family are structural components of invertebrate gap junctions and are analogous to vertebrate connexins. Here we investigate two Drosophila innexin genes,Dm-inx2 and Dm-inx3 and show that they are expressed in overlapping domains throughout embryogenesis, most notably in epidermal cells bordering each segment. We also explore the gap-junction–forming capabilities of the encoded proteins. In pairedXenopus oocytes, the injection of Dm-inx2mRNA results in the formation of voltage-sensitive channels in only ∼ 40% of cell pairs. In contrast, Dm-Inx3 never forms channels. Crucially, when both mRNAs are coexpressed, functional channels are formed reliably, and the electrophysiological properties of these channels distinguish them from those formed by Dm-Inx2 alone. We relate these in vitro data to in vivo studies. Ectopic expression ofDm-inx2 in vivo has limited effects on the viability ofDrosophila, and animals ectopically expressingDm-inx3 are unaffected. However, ectopic expression of both transcripts together severely reduces viability, presumably because of the formation of inappropriate gap junctions. We conclude that Dm-Inx2 and Dm-Inx3, which are expressed in overlapping domains during embryogenesis, can form oligomeric gap-junction channels.


1986 ◽  
Vol 250 (3) ◽  
pp. C495-C505 ◽  
Author(s):  
R. Agrawal ◽  
E. E. Daniel

This study examined whether the synthesis of the metabolites of arachidonic acid (AA) was involved in gap junction formation by 4-aminopyridine (4-AP) treatment in vitro in canine trachealis. Studies were made of the effects on gap junction formation of putative inhibitors of the cyclooxygenase and of both this and the lipoxygenase pathway of AA metabolism and the direct effects of prostaglandins (PG) E2 and I2. The number of gap junctions of similar size was increased after brief exposure to 4-AP. After indomethacin (IDM), 4-AP treatment decreased the number of gap junctions but did not affect their size. Pretreatment with 5,8,11,14-eicosatetraynoic acid or nordihydroguiaretic acid, putative inhibitors of cyclooxygenase and lipoxygenase enzymes, inhibited both the 4-AP-induced increase and decrease in the number of gap junctions. FPL 55712, a putative antagonist of leukotriene C4, did not alter either the number or the size of gap junctions when added alone or in combination with IDM. AA alone increased the number of gap junctions, but after IDM, AA decreased the number of gap junctions compared with the controls. Incubation of trachealis strips in vitro for 30 min with PGE2 increased the number of gap junctions by about threefold along with an increase in the size of the gap junctions. Similar incubation with PGI2, however, increased the number of gap junctions by approximately 60% without any change in the size. In the course of some control experiments, an interaction between carbachol and alcohol was observed such that alcohol caused an IDM-sensitive relaxation of carbachol-induced contractions, which was not observed when serotonin was the contractile agent. These results strongly suggest that PGE2 and PGI2 increase the formation of gap junctions in canine trachealis and that these prostanoids are released by 4-AP treatment. Leukotrienes may also be inhibitory in the formation of gap junctions, but FPL 55712 did not affect either the increase or the decrease in gap junctions after 4-AP.


2003 ◽  
Vol 89 (4) ◽  
pp. 2046-2054 ◽  
Author(s):  
Isabel Pais ◽  
Sheriar G. Hormuzdi ◽  
Hannah Monyer ◽  
Roger D. Traub ◽  
Ian C. Wood ◽  
...  

Bath application of kainate (100–300 nM) induced a persistent gamma-frequency (30–80 Hz) oscillation that could be recorded in stratum radiatum of the CA3 region in vitro. We have previously described that in knockout mice lacking the gap junction protein connexin 36 (Cx36KO), γ-frequency oscillations are reduced but still present. We now demonstrate that in the Cx36KO mice, but not in wild-type (WT), large population field excitatory postsynaptic potentials, or sharp wave-burst discharges, also occurred during the on-going γ-frequency oscillation. These spontaneous burst discharges were not seen in WT mice. Burst discharges in the Cx36KO mice occurred with a mean frequency of 0.23 ± 0.11 Hz and were accompanied by a series of fast (approximately 60–115 Hz) population spikes or “ripple” oscillations in many recordings. Intracellular recordings from CA3 pyramidal cells showed that the burst discharges consisted of a depolarizing response and presumed coupling potentials (spikelets) could occasionally be seen either before or during the burst discharge. The burst discharges occurring in Cx36KO mice were sensitive to gap junctions blockers as they were fully abolished by carbenoxolone (200 μM). In control mice we made several attempts to replicate this pattern of sharp wave activity/ripples occurring with the on-going kainate-evoked γ-frequency oscillation by manipulating synaptic and electrical signaling. Partial disruption of inhibition, in control slices, by bath application of the γ-aminobutyric acid-A (GABAA) receptor antagonist bicuculline (1–4 μM) completely abolished all γ-frequency activity before any burst discharges occurred. Increasing the number of open gap junctions in control slices by using trimethylamine (TMA; 2–10 mM), in conjunction with kainate, failed to elicit any sharp wave bursts or fast ripples. However, bath application of the potassium channel blocker 4-aminopyridine (4-AP; 20–80 μM) produced a pattern of activity in control mice (13/16 slices), consisting of burst discharges occurring in conjunction with kainate-evoked γ-frequency oscillations, that was similar to that seen in Cx36KO mice. In a few cases ( n = 9) the burst discharges were accompanied by fast ripple oscillations. Carbenoxolone also fully blocked the 4-AP-evoked burst discharges ( n = 5). Our results show that disruption of electrical signaling in the interneuronal network can, in the presence of kainate, lead to the spontaneous generation of sharp wave/ripple activity similar to that observed in vivo. This suggests a complex role for electrically coupled interneurons in the generation of hippocampal network activity.


Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 237 ◽  
Author(s):  
Takayuki Okamoto ◽  
Haruki Usuda ◽  
Tetsuya Tanaka ◽  
Koichiro Wada ◽  
Motomu Shimaoka

Angiogenesis—the sprouting and growth of new blood vessels from the existing vasculature—is an important contributor to tumor development, since it facilitates the supply of oxygen and nutrients to cancer cells. Endothelial cells are critically affected during the angiogenic process as their proliferation, motility, and morphology are modulated by pro-angiogenic and environmental factors associated with tumor tissues and cancer cells. Recent in vivo and in vitro studies have revealed that the gap junctions of endothelial cells also participate in the promotion of angiogenesis. Pro-angiogenic factors modulate gap junction function and connexin expression in endothelial cells, whereas endothelial connexins are involved in angiogenic tube formation and in the cell migration of endothelial cells. Several mechanisms, including gap junction function-dependent or -independent pathways, have been proposed. In particular, connexins might have the potential to regulate cell mechanics such as cell morphology, cell migration, and cellular stiffness that are dynamically changed during the angiogenic processes. Here, we review the implication for endothelial gap junctions and cellular mechanics in vascular angiogenesis.


2000 ◽  
Vol 84 (2) ◽  
pp. 927-933 ◽  
Author(s):  
Jeffrey S. Schweitzer ◽  
Haiwei Wang ◽  
Zhi-Qi Xiong ◽  
Janet L. Stringer

Under conditions of low [Ca2+]o and high [K+]o, the rat dentate granule cell layer in vitro develops recurrent spontaneous prolonged field bursts that resemble an in vivo phenomenon called maximal dentate activation. To understand how pH changes in vivo might affect this phenomenon, the slices were exposed to different extracellular pH environments in vitro. The field bursts were highly sensitive to extracellular pH over the range 7.0–7.6 and were suppressed at low pH and enhanced at high pH. Granule cell resting membrane potential, action potentials, and postsynaptic potentials were not significantly altered by pH changes within the range that suppressed the bursts. The pH sensitivity of the bursts was not altered by pharmacologic blockade of N-methyl-d-aspartate (NMDA), non-NMDA, and GABAA receptors at concentrations of these agents sufficient to eliminate both spontaneous and evoked synaptic potentials. Gap junction patency is known to be sensitive to pH, and agents that block gap junctions, including octanol, oleamide, and carbenoxolone, blocked the prolonged field bursts in a manner similar to low pH. Perfusion with gap junction blockers or acidic pH suppressed field bursts but did not block spontaneous firing of single and multiple units, including burst firing. These data suggest that the pH sensitivity of seizures and epileptiform phenomena in vivo may be mediated in large part through mechanisms other than suppression of NMDA-mediated or other excitatory synaptic transmission. Alterations in electrotonic coupling via gap junctions, affecting field synchronization, may be one such process.


2002 ◽  
Vol 365 (3) ◽  
pp. 693-699 ◽  
Author(s):  
Shoeb AHMAD ◽  
W. Howard EVANS

Gap-junction channels provide a widespread intercellular signalling mechanism. They are constructed of a family of connexin membrane proteins that thread across the membrane four times and oligomerize to generate hexameric gap-junction hemichannels. Using an in vitro cell-free transcription/translation system, we demonstrate that connexin (Cx) 26, one of the smallest connexins, is integrated directly in a post-translational manner into plasma membranes. Protein-cleavage studies of Cx26 integrated into plasma membranes indicate a similar native transmembrane topography to that of Cx26 integrated co-translationally into microsomes. Cx26 integrated post-translationally into plasma membranes oligomerizes and, when incorporated into liposomes, provides permeability to ascorbic acid, suggesting that gap-junction hemichannels are generated. The results provide the basis of a novel alternative mechanism for spontaneous assembly in plasma membranes of Cx26 gap-junction hemichannels that occurs independently of the conventional biogenesis of gap junctions involving connexin trafficking and oligomerization via membrane components of the secretory pathway.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Michael G. Jekir ◽  
Henry J. Donahue

Bone formation occurs in vivo in response to mechanical stimuli, but the signaling pathways involved remain unclear. The ability of bone cells to communicate with each other in the presence of an applied load may influence the overall osteogenic response. The goal of this research was to determine whether inhibiting cell-to-cell gap junctional communication between bone-forming cells would affect the ensemble cell response to an applied mechanical stimulus in vitro. In this study, we investigated the effects of controlled oscillatory fluid flow (OFF) on osteoblastic cells in the presence and the absence of a gap-junction blocker. MC3T3-E1 Clone 14 cells in a monolayer were exposed to 2h of OFF at a rate sufficient to create a shear stress of 20dynes∕cm2 at the cell surface, and changes in steady-state mRNA levels for a number of key proteins known to be involved in osteogenesis were measured. Of the five proteins investigated, mRNA levels for osteopontin (OPN) and osteocalcin were found to be significantly increased 24h postflow. These experiments were repeated in the presence of 18β-glycyrrhetinic acid (BGA), a known gap-junction blocker, to determine whether gap-junction intercellular communication is necessary for this response. We found that the increase in OPN mRNA levels is not observed in the presence of BGA, suggesting that gap junctions are involved in the signaling process. Interestingly, enzyme linked immunosorbent assay data showed that levels of secreted OPN protein increased 48h postflow and that this increase was unaffected by the presence of intact gap junctions.


1980 ◽  
Vol 239 (5) ◽  
pp. C217-C228 ◽  
Author(s):  
R. E. Garfield ◽  
D. Merrett ◽  
A. K. Grover

Myometrial tissues from pregnant rats were examined by electron microscopy for the presence of gap junctions after incubation in vitro with a variety of agents. Gap junctions were present in low frequency or absent prior to incubation in vitro. The junctions were present in control tissues in high frequency after 48 h incubation. The addition of cycloheximide or actinomycin D inhibited the incorporation of [3H]leucine into TCA-precipitable proteins and prevented gap junction formation. A prostacyclin analog (carbacyclin), a thromboxane synthesis inhibitor, and indomethacin also prevented gap junction formation. Oxytocin had no effect on gap junction formation but isoxsuprine decreased their number and increased their size. Isoxsuprine and isoproterenol also produced electron opaque crystals associated with the gap junctions. Dibutyryl cAMP treatment but not monobutyryl cGMP also increased the size of gap junctions. Based upon this and previous studies, we propose at least four sites for regulation of gap junctions and possible control of labor.


2019 ◽  
Author(s):  
Sarbjit Nijjar ◽  
Daniel Maddison ◽  
Louise Meigh ◽  
Elizabeth de Wolf ◽  
Thomas Rodgers ◽  
...  

SummaryCx26 hemichannels open in response to moderate elevations of CO2 (PCO2 55 mmHg) via a carbamylation reaction that depends on residues K125 and R104. Here we investigate the action of CO2 on Cx26 gap junctions. Using a dye transfer assay, we found that an elevated PCO2 of 55 mmHg greatly delayed the permeation of a fluorescent glucose analogue (NBDG) between HeLa cells coupled by Cx26 gap junctions. However, the mutations K125R or R104A abolished this effect of CO2. Whole cell recordings demonstrated that elevated CO2 reduced the Cx26 gap junction conductance (median reduction 5.6 nS, 95% confidence interval, 3.2 to 11.9 nS) but had no effect on Cx26K125R or Cx31 gap junctions. CO2 can cause intracellular acidification, but using 30 mM propionate we found that acidification in the absence of a change in PCO2 caused a median reduction in the gap junction conductance of 5.3 nS (2.8 to 8.3 nS). This effect of propionate was unaffected by the K125R mutation (median reduction 7.7 nS, 4.1 to 11.0 nS). pH-dependent and CO2-dependent closure of the gap junction are thus mechanistically independent. Mutations of Cx26 associated with the Keratitis Ichthyosis Deafness syndrome (N14K, A40V and A88V) also abolished the CO2-dependent gap junction closure. Elastic network modelling suggests that the lowest entropy state when CO2 is bound, is the closed configuration for the gap junction but the open state for the hemichannel. The opposing actions of CO2 on Cx26 gap junctions and hemichannels thus depend on the same residues and presumed carbamylation reaction.


2016 ◽  
Vol 28 (2) ◽  
pp. 232
Author(s):  
B. A. Foster ◽  
F. A. Diaz ◽  
P. T. Hardin ◽  
E. J. Gutierrez ◽  
K. R. Bondioli

Modulators of 3′-5′-cyclic adenosine monophosphate have been extensively researched to delay nuclear maturation in in vitro maturation (IVM) systems to improve synchronization of nuclear and cytoplasmic maturation. However while normal maturation for many organelles has been characterised, there is a lack of information on how modulators affect cytoplasmic maturation. The goal of this study was to identify the effect of different components of bovine oocyte maturation systems on 3 aspects of cytoplasmic maturation. Bovine oocytes were collected from mixed breed beef cattle using transvaginal ultrasound guided oocyte aspiration. Oocytes were assigned to 1 of 4 treatments; staining immediately after collection (n = 249) or after 24 h of IVM (n = 270), 2 h of pre-IVM in Forskolin and 3-isobutyl-1-methylxanthine (IBMX; n = 254), or 2 h of pre-IVM followed by IVM (n = 259). Following treatment, half of the recovered oocytes were stained with Hoechst 33342 to determine nuclear maturation status, and Calcein AM for gap junction status. The other half were stained with Hoechst 33342, Mitotracker deep red to identify mitochondria distribution patterns and Alexa Fluor 488 conjugated phalloidin for F actin microfilament distribution. Organelle patterns were coded and statistically analysed using linear models to determine if treatment had an effect on the indicators of cytoplasmic maturation or their agreement with nuclear maturation. Results indicated that there was a high degree of variability in both cytoplasmic and nuclear maturation of oocytes irrespective of treatment group, with many oocytes exhibiting aberrant patterns in both mitochondrial and microfilament distribution. Gap junctions were classified as open (immature), partially open or closed (mature), based on the strength of Calcein fluorescence within the ooplasm. Both treatment and nuclear maturation had a significant effect on gap junction status (P < 0.001) with gap junctions tending to close as oocytes matured, while treatment in pre-IVM maintained open gap junctions, even as meiosis progressed. Mitochondria were classified as peripheral (immature), diffuse, central (mature) or too sparse to accurately classify. There was an unexpectedly high proportion of oocytes with few mitochondria (17%), suggesting an incomplete growth phase before collection. There was no correlation between meiotic stage and mitochondrial distribution (P = 0.73), with the majority of oocytes having diffuse mitochondrial distribution. As normal maturation proceeds, microfilaments aggregate and migrate peripherally. However, neither microfilament aggregation nor redistribution were correlated with nuclear maturation (P = 0.6 and P = 0.11 respectively) or mitochondrial distribution (P = 0.33 and P = 0.06 respectively). Overall, results show that while pre-IVM maintains open gap junctions, the system studied here is not sufficient for improving correlation between cytoplasmic and nuclear maturation. Many deviations from normal cytoplasmic maturation are seen with IVM and these irregularities are maintained with prematuration in Forskolin and IBMX.


Sign in / Sign up

Export Citation Format

Share Document