Cisplatin-Induced Hyperactivity in the Dorsal Cochlear Nucleus and Its Relation to Outer Hair Cell Loss: Relevance to Tinnitus

2002 ◽  
Vol 88 (2) ◽  
pp. 699-714 ◽  
Author(s):  
James A. Kaltenbach ◽  
John D. Rachel ◽  
T. Alecia Mathog ◽  
Jinsheng Zhang ◽  
Pamela R. Falzarano ◽  
...  

Cisplatin causes both acute and chronic forms of tinnitus as well as increases in spontaneous neural activity (hyperactivity) in the dorsal cochlear nucleus (DCN) of hamsters. It has been hypothesized that the induction of hyperactivity in the DCN may be a consequence of cisplatin's effects on cochlear outer hair cells (OHCs); however, systematic studies testing this hypothesis have yet to appear in the literature. In the present investigation, the relationship between hyperactivity and OHC loss, induced by cisplatin, was examined in detail. Hamsters received five treatments of cisplatin at doses ranging from 1.5 to 3 mg · kg−1 · day−1, every other day. Beginning 1 mo after initiation of treatment, electrophysiological recordings were carried out on the surface of the DCN to measure spontaneous multiunit activity along a set of coordinates spanning the medial-lateral (tonotopic) axis of the DCN. After recordings, cochleas were removed and studied histologically using a scanning electron microscope. The results revealed that cisplatin-treated animals with little or no loss of OHCs displayed levels of activity similar to those seen in saline-treated controls. In contrast, the majority (75%) of cisplatin-treated animals with severe OHC loss displayed well-developed hyperactivity in the DCN. The induced hyperactivity was seen mainly in the medial (high-frequency) half of the DCN of treated animals. This pattern was consistent with the observation that OHC loss was distributed mainly in the basal half of the cochlea. In several of the animals with severe OHC loss and hyperactivity, there was no significant damage to IHC stereocilia nor any observable irregularities of the reticular lamina that might have interfered with normal IHC function. Hyperactivity was also observed in the DCN of animals showing severe losses of OHCs accompanied by damage to IHCs, although the degree of hyperactivity in these animals was less than in animals with severe OHC loss but intact IHCs. These results support the view that loss of OHC function may be a trigger of tinnitus-related hyperactivity in the DCN and suggest that this hyperactivity may be somewhat offset by damage to IHCs.

2000 ◽  
Vol 39 (1) ◽  
pp. 24-29 ◽  
Author(s):  
Sarah B. Melamed ◽  
James A. Kaltenbach ◽  
Michael W. Church ◽  
Donald L. Burgio ◽  
Chad E. Afmar

2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Han Zhou ◽  
Xiaoyun Qian ◽  
Nana Xu ◽  
Shasha Zhang ◽  
Guangjie Zhu ◽  
...  

Abstract Atg7 is an indispensable factor that plays a role in canonical nonselective autophagy. Here we show that genetic ablation of Atg7 in outer hair cells (OHCs) in mice caused stereocilium damage, somatic electromotility disturbances, and presynaptic ribbon degeneration over time, which led to the gradual wholesale loss of OHCs and subsequent early-onset profound hearing loss. Impaired autophagy disrupted OHC mitochondrial function and triggered the accumulation of dysfunctional mitochondria that would otherwise be eliminated in a timely manner. Atg7-independent autophagy/mitophagy processes could not compensate for Atg7 deficiency and failed to rescue the terminally differentiated, non-proliferating OHCs. Our results show that OHCs orchestrate intricate nonselective and selective autophagic/mitophagy pathways working in concert to maintain cellular homeostasis. Overall, our results demonstrate that Atg7-dependent autophagy plays a pivotal cytoprotective role in preserving OHCs and maintaining hearing function.


2021 ◽  
Vol 15 ◽  
Author(s):  
Richard A. Altschuler ◽  
Lisa Kabara ◽  
Catherine Martin ◽  
Ariane Kanicki ◽  
Courtney E. Stewart ◽  
...  

Our previous study demonstrated rapamycin added to diet at 4 months of age had significantly less age-related outer hair cell loss in the basal half of the cochlea at 22 months of age compared to mice without rapamycin. The present study tested adding rapamycin to diet later in life, at 14 months of age, and added a longitudinal assessment of auditory brain stem response (ABR). The present study used UMHET4 mice, a 4 way cross in which all grandparental strains lack the Cdh23753A allele that predisposes to early onset, progressive hearing loss. UMHET4 mice typically have normal hearing until 16–17 months, then exhibit threshold shifts at low frequencies/apical cochlea and later in more basal high frequency regions. ABR thresholds at 4, 12, 24, and 48 kHz were assessed at 12, 18, and 24 months of age and compared to baseline ABR thresholds acquired at 5 months of age to determine threshold shifts (TS). There was no TS at 12 months of age at any frequency tested. At 18 months of age mice with rapamycin added to diet at 14 months had a significantly lower mean TS at 4 and 12 kHz compared to mice on control diet with no significant difference at 24 and 48 kHz. At 24 months of age, the mean 4 kHz TS in rapamycin diet group was no longer significantly lower than the control diet group, while the 12 kHz mean remained significantly lower. Mean TS at 24 and 48 kHz in the rapamycin diet group became significantly lower than in the control diet group at 24 months. Hair cell counts at 24 months showed large loss in the apical half of most rapamycin and control diet mice cochleae with no significant difference between groups. There was only mild outer hair cell loss in the basal half of rapamycin and control diet mice cochleae with no significant difference between groups. The results show that a later life addition of rapamycin can decrease age-related hearing loss in the mouse model, however, it also suggests that this decrease is a delay/deceleration rather than a complete prevention.


2007 ◽  
Vol 137 (2) ◽  
pp. 327-331 ◽  
Author(s):  
Dilip Madnani ◽  
Geming Li ◽  
Christopher M. Frenz ◽  
Dorothy A. Frenz

OBJECTIVE: The aim of this study was to examine the effect of oral ethanol on cisplatin ototoxicity. STUDY DESIGN AND SETTING: Twenty-seven-week-old, female Fisher 344 rats were divided into 4 experimental groups. The animals were administered per os (PO) saline (group 1), PO ethanol (group 2), PO saline with intraperitoneal (IP) cisplatin (group 3), or PO ethanol with IP cisplatin (group 4). After 3 days, scanning electron microscopy and counts of outer auditory hair cells were performed. RESULTS: A 2-fold increase in outer hair cell loss was obtained in the basal cochlear turn of rats receiving concomitant cisplatin and ethanol compared with animals receiving cisplatin and saline. No hair cell loss was observed in the middle cochlear turn of any experimental group. CONCLUSION: Our findings support potentiation of ototoxicity when cisplatin is combined with oral ethanol. SIGNIFICANCE: Contraindications for alcohol use in cancer patients receiving cisplatin are implicated.


1998 ◽  
Vol 124 (1-2) ◽  
pp. 78-84 ◽  
Author(s):  
James A Kaltenbach ◽  
Donald A Godfrey ◽  
John B Neumann ◽  
Devin L McCaslin ◽  
Chad E Afman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document