Rats in the genomic era

2008 ◽  
Vol 32 (3) ◽  
pp. 273-282 ◽  
Author(s):  
K. C. Worley ◽  
G. M. Weinstock ◽  
R. A. Gibbs

The rat genome project and the resources that it has generated are transforming the translation of rat biology to human medicine. The rat genome was sequenced to a high quality “draft,” the structure and location of the genes were predicted, and a global assessment was published (Gibbs RA et al., Nature 428: 493–521, 2004). Since that time, researchers have made use of the genome sequence and annotations and related resources. We take this opportunity to review the currently available rat genome resources and to discuss the progress and future plans for the rat genome.

2014 ◽  
Vol 9 (1) ◽  
Author(s):  
Oleg Mediannikov ◽  
Thi-Thien Nguyen ◽  
Lesley Bell-Sakyi ◽  
Roshan Padmanabhan ◽  
Pierre-Edouard Fournier ◽  
...  

2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Jennifer Town ◽  
Patrice Audy ◽  
Susan M. Boyetchko ◽  
Tim J. Dumonceaux

Pantoea sp. strain OXWO6B1 inhibits the growth of the potato pathogen Phytophthora infestans . We determined the 5.2-Mbp genome sequence of this strain, which featured at least 3 confirmed plasmids of up to 250 kbp. The genome sequence of OXWO6B1 is different from that of all previously sequenced strains of Pantoea .


2013 ◽  
Vol 8 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Erko Stackebrandt ◽  
Olga Chertkov ◽  
Alla Lapidus ◽  
Matt Nolan ◽  
Susan Lucas ◽  
...  

Author(s):  
Corrinne E Grover ◽  
Daojun Yuan ◽  
Mark A Arick ◽  
Emma R Miller ◽  
Guanjing Hu ◽  
...  

Abstract Cotton is an important textile crop whose gains in production over the last century have been challenged by various diseases. Because many modern cultivars are susceptible to several pests and pathogens, breeding efforts have included attempts to introgress wild, naturally resistant germplasm into elite lines. Gossypium stocksii is a wild cotton species native to Africa, which is part of a clade of vastly understudied species. Most of what is known about this species comes from pest resistance surveys and/or breeding efforts, which suggests that G. stocksii could be a valuable reservoir of natural pest resistance. Here we present a high-quality de novo genome sequence for G. stocksii. We compare the G. stocksii genome with resequencing data from a closely related, understudied species (G. somalense) to generate insight into the relatedness of these cotton species. Finally, we discuss the utility of the G. stocksii genome for understanding pest resistance in cotton, particularly resistance to cotton leaf curl virus.


2018 ◽  
Vol 6 (19) ◽  
pp. e00383-18 ◽  
Author(s):  
David K. Ngugi ◽  
Ulrich Stingl

ABSTRACT Candidate division SA1 encompasses a phylogenetically coherent archaeal group ubiquitous in deep hypersaline anoxic brines around the globe. Recently, the genome sequences of two cultivated representatives from hypersaline soda lake sediments were published. Here, we present a single-cell genome sequence from Nereus Deep in the Red Sea that represents a putatively novel family within SA1.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Suelen Scarpa de Mello ◽  
Daria Van Tyne ◽  
Andrei Nicoli Gebieluca Dabul ◽  
Michael S. Gilmore ◽  
Ilana L. B. C. Camargo

Specific lineages of the commensal bacterium Enterococcus faecium belonging to CC17, especially ST412, have been isolated from patients in several hospitals worldwide and harbor antibiotic resistance genes and virulence factors. Here, we report a high-quality draft genome sequence and highlight features of E. faecium VRE16, a representative of this ST.


2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Wayne Reeve ◽  
John Sullivan ◽  
Clive Ronson ◽  
Rui Tian ◽  
Christine Munk ◽  
...  

2021 ◽  
Author(s):  
Jie Wang ◽  
Shiming Li ◽  
Lei Lan ◽  
Mushan Xie ◽  
Shu Cheng ◽  
...  

Abstract Background: Setaria italica is the second-most widely planted species of millets in the world and an important model grain crop for the research of C4 photosynthesis and abiotic stress tolerance. Through three genomes assembly and annotation efforts, all genomes were based on next generation sequencing technology, which limited the genome continuity. Results: Here we report a high-quality whole-genome of new cultivar Huagu11, using single-molecule real-time sequencing and High-throughput chromosome conformation capture (Hi-C) mapping technologies. The total assembly size of the Huagu11 genome was 408.37 Mb with a scaffold N50 size of 45.89 Mb. Compared with the other three reported millet genomes based on the next generation sequencing technology, the Huagu11 genome had the highest genomic continuity. Intraspecies comparison showed about 94.97% and 94.66% of the Yugu1 and Huagu11 genomes, respectively, were able to be aligned as one-to-one blocks with four chromosome inversion. The Huagu11 genome contained approximately 19.43 Mb Presence/absence Variation (PAV) with 627 protein-coding transcripts, while Yugu1 genomes had 20.53 Mb PAV sequences encoding 737 proteins. Overall, 969,596 Single-nucleotide polymorphism (SNPs) and 156,282 insertion-deletion (InDels) were identified between these two genomes. The genome comparison between Huagu11 and Yugu1 should reflect the genetic identity and variation between the cultivars of foxtail millet to a certain extent. The Ser-626-Aln substitution in acetohydroxy acid synthase (AHAS) was found to be relative to the imazethapyr tolerance in Huagu11. Conclusions: A new improved high-quality reference genome sequence of Setaria italica was assembled, and intraspecies genome comparison determined the genetic identity and variation between the cultivars of foxtail millet. Based on the genome sequence, it was found that the Ser-626-Aln substitution in AHAS was responsible for the imazethapyr tolerance in Huagu11. The new improved reference genome of Setaria italica will promote the genic and genomic studies of this species and be beneficial for cultivar improvement.


2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Sofie E. De Meyer ◽  
Rui Tian ◽  
Rekha Seshadri ◽  
Natalia Ivanova ◽  
Amrita Pati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document