From Limbs to Lungs: A Newt Perspective on Compensatory Lung Growth

Physiology ◽  
1999 ◽  
Vol 14 (6) ◽  
pp. 260-267 ◽  
Author(s):  
Kirk A. Gilbert ◽  
D. Eugene Rannels

Partial lung resection initiates compensatory growth of remaining lobes to restore pulmonary structure and function. Mechanisms underlying this response are not well defined. This article considers molecular pathways involved in control of amphibian limb regeneration and tissue pattern formation for novel insight into the understanding of compensatory lung growth.

Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


2019 ◽  
Vol 14 (6) ◽  
pp. 470-479 ◽  
Author(s):  
Nazia Parveen ◽  
Amen Shamim ◽  
Seunghee Cho ◽  
Kyeong Kyu Kim

Background: Although most nucleotides in the genome form canonical double-stranded B-DNA, many repeated sequences transiently present as non-canonical conformations (non-B DNA) such as triplexes, quadruplexes, Z-DNA, cruciforms, and slipped/hairpins. Those noncanonical DNAs (ncDNAs) are not only associated with many genetic events such as replication, transcription, and recombination, but are also related to the genetic instability that results in the predisposition to disease. Due to the crucial roles of ncDNAs in cellular and genetic functions, various computational methods have been implemented to predict sequence motifs that generate ncDNA. Objective: Here, we review strategies for the identification of ncDNA motifs across the whole genome, which is necessary for further understanding and investigation of the structure and function of ncDNAs. Conclusion: There is a great demand for computational prediction of non-canonical DNAs that play key functional roles in gene expression and genome biology. In this study, we review the currently available computational methods for predicting the non-canonical DNAs in the genome. Current studies not only provide an insight into the computational methods for predicting the secondary structures of DNA but also increase our understanding of the roles of non-canonical DNA in the genome.


2009 ◽  
Vol 107 (5) ◽  
pp. 1569-1578 ◽  
Author(s):  
Cuneyt Yilmaz ◽  
Priya Ravikumar ◽  
D. Merrill Dane ◽  
Dennis J. Bellotto ◽  
Robert L. Johnson ◽  
...  

To quantify the in vivo magnitude and distribution of regional compensatory lung growth following extensive lung resection, we performed high-resolution computed tomography at 15- and 30-cmH2O transpulmonary pressures and measured air and tissue (including microvascular blood) volumes within and among lobes in six adult male foxhounds, before and after balanced 65% lung resection (∼32% removed from each side). Each lobe was identified from lobar fissures. Intralobar gradients in air and tissue volumes were expressed along standardized x, y, z-coordinate axes. Fractional tissue volume (FTV) was calculated as the volume ratio of tissue/(tissue + air). Following resection compared with before, lobar air and tissue volumes increased 1.8- to 3.5-fold, and whole lung air and tissue volumes were 67 and 90% of normal, respectively. Lobar-specific compliance doubled post-resection, and whole lung-specific compliance normalized. These results are consistent with vigorous compensatory growth in all remaining lobes. Compared with pre-resection, post-resection interlobar heterogeneity of FTV, assessed from the coefficient of variation, decreased at submaximal inflation, but was unchanged at maximal inflation. The coefficient of variation of intralobar FTV gradients changed variably due to the patchy development of thickened pleura and alveolar septa, with elevated alveolar septal density and connective tissue content in posterior-caudal and peripheral regions of the remaining lobes; these areas likely experienced disproportional mechanical stress. We conclude that HRCT can noninvasively and quantitatively assess the magnitude and spatial distribution of compensatory lung growth. Following extensive resection, heterogeneous regional mechanical lung strain may exceed the level that could be sustained solely by existing connective tissue elements.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 70 ◽  
Author(s):  
Espen Mikal Robertsen ◽  
Hubert Denise ◽  
Alex Mitchell ◽  
Robert D. Finn ◽  
Lars Ailo Bongo ◽  
...  

Metagenomics, the study of genetic material recovered directly from environmental samples, has the potential to provide insight into the structure and function of heterogeneous microbial communities.  There has been an increased use of metagenomics to discover and understand the diverse biosynthetic capacities of marine microbes, thereby allowing them to be exploited for industrial, food, and health care products. This ELIXIR pilot action was motivated by the need to establish dedicated data resources and harmonized metagenomics pipelines for the marine domain, in order to enhance the exploration and exploitation of marine genetic resources. In this paper, we summarize some of the results from the ELIXIR pilot action “Marine metagenomics – towards user centric services”.


1989 ◽  
Vol 67 (4) ◽  
pp. 1418-1421 ◽  
Author(s):  
J. T. McBride

To investigate the role of lung distension in compensatory lung growth, the right lung of each of 21 adult male ferrets was replaced with a silicone rubber balloon filled with mineral oil. Three to thirteen weeks after surgery, the oil was removed through a subcutaneous port. Lung volumes were measured serially until 3–6 wk after balloon deflation. With pneumonectomy the total lung capacity (TLC) decreased to less than 50% of the preoperative value and remained essentially unchanged while the balloon was inflated. At balloon deflation, TLC and vital capacity did not change immediately, whereas functional residual capacity increased by 44%, indicating a change of 2–3 cmH2O in end-expiratory transpulmonary pressure. TLC increased by 10% within 3 days and continued to increase over the subsequent 3–5 wk by a total of 25% over TLC at balloon deflation. There was little difference in this response between animals whose balloons were deflated 3 wk after surgery and those in which deflation was delayed up to 13 wk. After pneumonectomy in the adult ferret, the remaining lung increases in volume in response to an increase in lung distension even weeks or months after surgery. The extent to which this volume increase involves lung tissue growth or depends on previous lung resection is at present unknown. This model may be useful for studies of the mechanisms by which lung distension influences lung volume and compensatory lung growth.


2007 ◽  
Vol 134 (5) ◽  
pp. 1300-1305 ◽  
Author(s):  
Lucas G. Fernandez ◽  
Christopher K. Mehta ◽  
Irving L. Kron ◽  
Victor E. Laubach

2020 ◽  
Vol 157 ◽  
pp. 104557 ◽  
Author(s):  
Fengling Ning ◽  
Hong Xin ◽  
Junqiu Liu ◽  
Chao Lv ◽  
Xin Xu ◽  
...  

2011 ◽  
Vol 301 (4) ◽  
pp. F684-F696 ◽  
Author(s):  
Ossama B. Kashlan ◽  
Thomas R. Kleyman

Our understanding of epithelial Na+ channel (ENaC) structure and function has been profoundly impacted by the resolved structure of the homologous acid-sensing ion channel 1 (ASIC1). The structure of the extracellular and pore regions provide insight into channel assembly, processing, and the ability of these channels to sense the external environment. The absence of intracellular structures precludes insight into important interactions with intracellular factors that regulate trafficking and function. The primary sequences of ASIC1 and ENaC subunits are well conserved within the regions that are within or in close proximity to the plasma membrane, but poorly conserved in peripheral domains that may functionally differentiate family members. This review examines functional data, including ion selectivity, gating, and amiloride block, in light of the resolved ASIC1 structure.


Sign in / Sign up

Export Citation Format

Share Document