scholarly journals Pavlovian Conditioning of Immunological and Neuroendocrine Functions

2020 ◽  
Vol 100 (1) ◽  
pp. 357-405 ◽  
Author(s):  
Martin Hadamitzky ◽  
Laura Lückemann ◽  
Gustavo Pacheco-López ◽  
Manfred Schedlowski

The phenomenon of behaviorally conditioned immunological and neuroendocrine functions has been investigated for the past 100 yr. The observation that associative learning processes can modify peripheral immune functions was first reported and investigated by Ivan Petrovic Pavlov and his co-workers. Their work later fell into oblivion, also because so little was known about the immune system’s function and even less about the underlying mechanisms of how learning, a central nervous system activity, could affect peripheral immune responses. With the employment of a taste-avoidance paradigm in rats, this phenomenon was rediscovered 45 yr ago as one of the most fascinating examples of the reciprocal functional interaction between behavior, the brain, and peripheral immune functions, and it established psychoneuroimmunology as a new research field. Relying on growing knowledge about efferent and afferent communication pathways between the brain, neuroendocrine system, primary and secondary immune organs, and immunocompetent cells, experimental animal studies demonstrate that cellular and humoral immune and neuroendocrine functions can be modulated via associative learning protocols. These (from the classical perspective) learned immune responses are clinically relevant, since they affect the development and progression of immune-related diseases and, more importantly, are also inducible in humans. The increased knowledge about the neuropsychological machinery steering learning and memory processes together with recent insight into the mechanisms mediating placebo responses provide fascinating perspectives to exploit these learned immune and neuroendocrine responses as supportive therapies, the aim being to reduce the amount of medication required, diminishing unwanted drug side effects while maximizing the therapeutic effect for the patient’s benefit.

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2160
Author(s):  
Fuxuan Wang ◽  
Shihao Li ◽  
Fuhua Li

The lymphoid organ is an essential part of the immune system involved in cellular and humoral immune responses in shrimp. However, its roles in the immune responses against different pathogens are still largely unclear. In the present study, transcriptomic analysis was applied to compare the differentially expressed genes (DEGs) in the lymphoid organ of shrimp after Vibrio or WSSV challenge. In total, 2127 DEGs were screened in the lymphoid organ of shrimp at 6 h post Vibrio parahaemolyticus injection, and 1569 DEGs were obtained at the same time after WSSV challenge. KEGG pathway enrichment analysis of these DEGs revealed that two significantly enriched pathways including “neuroactive ligand–receptor interaction” and “protein digestion and absorption” were responsive to both pathogens. In contrast, “lysosome” was the significantly enriched pathway only in Vibrio challenge whereas carbohydrate metabolism related pathways were the significantly enriched pathways only in WSSV challenge. Further analysis on immune-related DEGs showed that Vibrio challenge induced broad immune responses in the lymphoid organ including activation of several pattern recognition receptors, the proPO activating system, phagocytosis related genes, and immune effectors. In contrast, the immune responses seemed to be inhibited after WSSV infection. The data suggest that the shrimp lymphoid organ plays different functions in response to the infection of distinct pathogens at the early stage, which provides new insights into the immune functions of lymphoid organ in shrimp.


Author(s):  
Yingxu Wang

The development of classical and contemporary informatics, the cross fertilization between computer science, systems science, cybernetics, computer/software engineering, cognitive science, neuropsychology, knowledge engineering, and life science, has led to a new research field known as Cognitive Informatics (Wang, 2002a/2003a/2003b/2004/2006a/2007b; Wang, Johnston, & Smith, 2002; Wang & Kinsner, 2006). An important branch of cognitive informatics is neural informatics (Wang, 2007b), which reduces cognitive informatics theories and the studies on the internal information processing mechanisms of the brain onto the neuron and physiological level.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chuanjun Zhuo ◽  
Weihong Hou ◽  
Hongjun Tian ◽  
Lina Wang ◽  
Ranli Li

Abstract Schizophrenia is a serious neuropsychiatric disorder, yet a clear pathophysiology has not been identified. To date, neither the objective biomarkers for diagnosis nor specific medications for the treatment of schizophrenia are clinically satisfactory. It is well accepted that lipids are essential to maintain the normal structure and function of neurons in the brain and that abnormalities in neuronal lipids are associated with abnormal neurodevelopment in schizophrenia. However, lipids and lipid-like molecules have been largely unexplored in contrast to proteins and their genes in schizophrenia. Compared with the gene- and protein-centric approaches, lipidomics is a recently emerged and rapidly evolving research field with particular importance for the study of neuropsychiatric disorders such as schizophrenia, in which even subtle aberrant alterations in the lipid composition and concentration of the neurons may disrupt brain functioning. In this review, we aimed to highlight the lipidomics of the brain, retina, and biofluids in both human and animal studies, discuss aberrant lipid alterations in correlation with schizophrenia, and propose future directions from the biological landscape towards potential clinical applications in schizophrenia. Recent studies are in support of the concept that aberrations in some lipid species [e.g. phospholipids, polyunsaturated fatty acids (PUFAs)] lead to structural alterations and, in turn, impairments in the biological function of membrane-bound proteins, the disruption of cell signaling molecule accessibility, and the dysfunction of neurotransmitter systems. In addition, abnormal lipidome alterations in biofluids are linked to schizophrenia, and thus they hold promise in the discovery of biomarkers for the diagnosis of schizophrenia.


2000 ◽  
Vol 103 (1) ◽  
pp. 8-15 ◽  
Author(s):  
Koji Kajiwara ◽  
Andrew P Byrnes ◽  
Yoshinori Ohmoto ◽  
Harry M Charlton ◽  
Matthew J.A Wood ◽  
...  

1997 ◽  
Vol 27 (11) ◽  
pp. 1285-1291 ◽  
Author(s):  
M. N. KOLOPP-SARDA ◽  
D. A. MONERET-VAUTRIN ◽  
B. GOBERT ◽  
G. KANNY ◽  
M. BRODSCHII ◽  
...  

2014 ◽  
Vol 222 (3) ◽  
pp. 148-153 ◽  
Author(s):  
Sabine Vits ◽  
Manfred Schedlowski

Associative learning processes are one of the major neuropsychological mechanisms steering the placebo response in different physiological systems and end organ functions. Learned placebo effects on immune functions are based on the bidirectional communication between the central nervous system (CNS) and the peripheral immune system. Based on this “hardware,” experimental evidence in animals and humans showed that humoral and cellular immune functions can be affected by behavioral conditioning processes. We will first highlight and summarize data documenting the variety of experimental approaches conditioning protocols employed, affecting different immunological functions by associative learning. Taking a well-established paradigm employing a conditioned taste aversion model in rats with the immunosuppressive drug cyclosporine A (CsA) as an unconditioned stimulus (US) as an example, we will then summarize the efferent and afferent communication pathways as well as central processes activated during a learned immunosuppression. In addition, the potential clinical relevance of learned placebo effects on the outcome of immune-related diseases has been demonstrated in a number of different clinical conditions in rodents. More importantly, the learned immunosuppression is not restricted to experimental animals but can be also induced in humans. These data so far show that (i) behavioral conditioned immunosuppression is not limited to a single event but can be reproduced over time, (ii) immunosuppression cannot be induced by mere expectation, (iii) psychological and biological variables can be identified as predictors for this learned immunosuppression. Together with experimental approaches employing a placebo-controlled dose reduction these data provide a basis for new therapeutic approaches to the treatment of diseases where a suppression of immune functions is required via modulation of nervous system-immune system communication by learned placebo effects.


2005 ◽  
Vol 5 (1) ◽  
pp. 29-37
Author(s):  
elisabeth townsend

Humans: The Cooking Ape Perhaps the first to suggest that humans were cooking as early as 1.9 million years ago, Richard Wrangham shows through his new research and his imagination how and possibly when cooking changed humans dramatically. Wrangham, Harvard University primatologist and MacArthur Fellow, has been studying the evolution of human cooking. After 25 years of primate research at his site in Kibale, Uganda, Wrangham is best known for explaining the similarity and differences across species of primate social organizations. In Kibale, he has analyzed chimpanzees’ behavior: how it’s changed when they interact with the environment and how their social groups have evolved. In particular, he noticed how food changed their interactions with each other. Like that of chimps, human behavior has been affected by food, especially as they shifted from raw to cooked food. Moving from eating food as it was discovered to collecting edibles and cooking them altered our social relationships. Cooked food has changed Homo sapiens physically by making food more digestible thereby altering jaws, teeth, and guts, and providing more calories for more expensive organs such as the brain. Wrangham discusses when and how humans may have started using fire to cook food, what they cooked, and the transition from cooking in an outdoor fire to hearths and open ovens.


2018 ◽  
Vol 2 (XXIII) ◽  
pp. 121-133
Author(s):  
Katarzyna Wojan

This article outlines the original research concept developed and applied by the Voronezh researchers, which brought both quantitative and qualitative results to the field of linguistic comparative research. Their monograph is devoted to the macrotypological unity of the lexical semantics of the languages in Europe. In addition, semantic stratification of Russian and Polish lexis has been analyzed. Their research concept is now known as the “lexical-semantic macrotypological school of Voronezh.” Representatives of this school have created a new research field in theoretical linguistics – a lexical-semantic language macrotypology as a branch of linguistic typology. The monograph has been widely discussed and reviewed in Russia.


Sign in / Sign up

Export Citation Format

Share Document