scholarly journals Principles of odor coding in vertebrates and artificial chemosensory systems

Author(s):  
Ivan Manzini ◽  
Detlev Schild ◽  
Corrado Di Natale

The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7808 ◽  
Author(s):  
Jesús Olivares ◽  
Oliver Schmachtenberg

About half of all extant vertebrates are teleost fishes. Although our knowledge about anatomy and function of their olfactory systems still lags behind that of mammals, recent advances in cellular and molecular biology have provided us with a wealth of novel information about the sense of smell in this important animal group. Its paired olfactory organs contain up to five types of olfactory receptor neurons expressing OR, TAAR, VR1- and VR2-class odorant receptors associated with individual transduction machineries. The different types of receptor neurons are preferentially tuned towards particular classes of odorants, that are associated with specific behaviors, such as feeding, mating or migration. We discuss the connections of the receptor neurons in the olfactory bulb, the differences in bulbar circuitry compared to mammals, and the characteristics of second order projections to telencephalic olfactory areas, considering the everted ontogeny of the teleost telencephalon. The review concludes with a brief overview of current theories about odor coding and the prominent neural oscillations observed in the teleost olfactory system.


Author(s):  
Kenshi Hayashi

In biological olfactory systems, odor receptors receive odor molecules by recognizing the molecular information. Humans can sense the odor by the signal from these activated receptors. The combination of the activated receptors is called “odor code,” and the odor codes are expressed as an “odor cluster map” of glomeruli on the olfactory bulb surface. The odor code is essential information for qualitative and quantitative analyses of odor sensation. In this chapter, development of odor sensors based on the odor code concept and an attempt to extract the parameters for odor coding from molecular informatics are described. Application of the obtained odor code for odor reproduction is also presented.


Biosensors ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 309
Author(s):  
Ping Zhu ◽  
Yulan Tian ◽  
Yating Chen ◽  
Wei Chen ◽  
Ping Wang ◽  
...  

The mammalian olfactory system has an amazing ability to distinguish thousands of odorant molecules at the trace level. Scientists have made great achievements on revealing the olfactory sensing mechanisms in decades; even though many issues need addressing. Optogenetics provides a novel technical approach to solve this dilemma by utilizing light to illuminate specific part of the olfactory system; which can be used in all corners of the olfactory system for revealing the olfactory mechanism. This article reviews the most recent advances in olfactory optogenetics devoted to elucidate the mechanisms of chemical sensing. It thus attempts to introduce olfactory optogenetics according to the structure of the olfactory system. It mainly includes the following aspects: the sensory input from the olfactory epithelium to the olfactory bulb; the influences of the olfactory bulb (OB) neuron activity patterns on olfactory perception; the regulation between the olfactory cortex and the olfactory bulb; and the neuromodulation participating in odor coding by dominating the olfactory bulb. Finally; current challenges and future development trends of olfactory optogenetics are proposed and discussed.


Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 82
Author(s):  
Kyle W. Leathers ◽  
Brenden T. Michaelis ◽  
Matthew A. Reidenbach

Olfactory systems in animals play a major role in finding food and mates, avoiding predators, and communication. Chemical tracking in odorant plumes has typically been considered a spatial information problem where individuals navigate towards higher concentration. Recent research involving chemosensory neurons in the spiny lobster, Panulirus argus, show they possess rhythmically active or ‘bursting’ olfactory receptor neurons that respond to the intermittency in the odor signal. This suggests a possible, previously unexplored olfactory search strategy that enables lobsters to utilize the temporal variability within a turbulent plume to track the source. This study utilized computational fluid dynamics to simulate the turbulent dispersal of odorants and assess a number of search strategies thought to aid lobsters. These strategies include quantification of concentration magnitude using chemosensory antennules and leg chemosensors, simultaneous sampling of water velocities using antennule mechanosensors, and utilization of antennules to quantify intermittency of the odorant plume. Results show that lobsters can utilize intermittency in the odorant signal to track an odorant plume faster and with greater success in finding the source than utilizing concentration alone. However, the additional use of lobster leg chemosensors reduced search time compared to both antennule intermittency and concentration strategies alone by providing spatially separated odorant sensors along the body.


2009 ◽  
Vol 89 (3) ◽  
pp. 921-956 ◽  
Author(s):  
Roberto Tirindelli ◽  
Michele Dibattista ◽  
Simone Pifferi ◽  
Anna Menini

In recent years, considerable progress has been achieved in the comprehension of the profound effects of pheromones on reproductive physiology and behavior. Pheromones have been classified as molecules released by individuals and responsible for the elicitation of specific behavioral expressions in members of the same species. These signaling molecules, often chemically unrelated, are contained in body fluids like urine, sweat, specialized exocrine glands, and mucous secretions of genitals. The standard view of pheromone sensing was based on the assumption that most mammals have two separated olfactory systems with different functional roles: the main olfactory system for recognizing conventional odorant molecules and the vomeronasal system specifically dedicated to the detection of pheromones. However, recent studies have reexamined this traditional interpretation showing that both the main olfactory and the vomeronasal systems are actively involved in pheromonal communication. The current knowledge on the behavioral, physiological, and molecular aspects of pheromone detection in mammals is discussed in this review.


Science ◽  
2018 ◽  
Vol 361 (6407) ◽  
pp. eaat6904 ◽  
Author(s):  
Kevin A. Bolding ◽  
Kevin M. Franks

Animals rely on olfaction to find food, attract mates, and avoid predators. To support these behaviors, they must be able to identify odors across different odorant concentrations. The neural circuit operations that implement this concentration invariance remain unclear. We found that despite concentration-dependence in the olfactory bulb (OB), representations of odor identity were preserved downstream, in the piriform cortex (PCx). The OB cells responding earliest after inhalation drove robust responses in sparse subsets of PCx neurons. Recurrent collateral connections broadcast their activation across the PCx, recruiting global feedback inhibition that rapidly truncated and suppressed cortical activity for the remainder of the sniff, discounting the impact of slower, concentration-dependent OB inputs. Eliminating recurrent collateral output amplified PCx odor responses rendered the cortex steeply concentration-dependent and abolished concentration-invariant identity decoding.


Author(s):  
Lidong Wang ◽  
Kwun-Lon Ting ◽  
Martha Kosa

The integration of design, analysis and manufacturing is a challenging issue in product development. Much research focuses on creating data exchange standards such as STL, IGES, EDI, and STEP etc. However, these standards are not ideal in data exchange and communication via the Web. In this paper, a unified framework based on XML was created to integrate design, analysis, and manufacturing. The structures of DTDs and XML files of geometric design, finite element analysis and NC machining were developed. Key technologies of supporting the XML-based integration and information communication, such as DOM, SAX and SOAP etc. were discussed. XML-based integration will shorten the development cycle, save costs in product development, and finally improve the competitive capability in the global competition of product development.


2014 ◽  
Vol 34 (13) ◽  
pp. 4654-4664 ◽  
Author(s):  
M. Rothermel ◽  
R. M. Carey ◽  
A. Puche ◽  
M. T. Shipley ◽  
M. Wachowiak

2018 ◽  
Vol 120 (1) ◽  
pp. 171-185 ◽  
Author(s):  
Seth Haney ◽  
Debajit Saha ◽  
Baranidharan Raman ◽  
Maxim Bazhenov

Adaptation of neural responses is ubiquitous in sensory systems and can potentially facilitate many important computational functions. Here we examined this issue with a well-constrained computational model of the early olfactory circuits. In the insect olfactory system, the responses of olfactory receptor neurons (ORNs) on the antennae adapt over time. We found that strong adaptation of sensory input is important for rapidly detecting a fresher stimulus encountered in the presence of other background cues and for faithfully representing its identity. However, when the overlapping odorants were chemically similar, we found that adaptation could alter the representation of these odorants to emphasize only distinguishing features. This work demonstrates novel roles for peripheral neurons during olfactory processing in complex environments. NEW & NOTEWORTHY Olfactory systems face the problem of distinguishing salient information from a complex olfactory environment. The neural representations of specific odor sources should be consistent regardless of the background. How are olfactory representations robust to varying environmental interference? We show that in locusts the extraction of salient information begins in the periphery. Olfactory receptor neurons adapt in response to odorants. Adaptation can provide a computational mechanism allowing novel odorant components to be highlighted during complex stimuli.


Sign in / Sign up

Export Citation Format

Share Document