The Osteocyte as a Signaling Cell

Author(s):  
Jesus Medical Delgado-Calle ◽  
Teresita Bellido

Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone as well as in distant tissues. Osteocytes are a significant source of molecules that regulate bone homeostasis by integrating mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of various bone therapeutics used in the clinic. Herein, we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematological and metastatic cancers in the skeleton.

2018 ◽  
Vol 69 (7) ◽  
pp. 1706-1709
Author(s):  
Nicoleta Dumitru ◽  
Andra Cocolos ◽  
Andra Caragheorgheopol ◽  
Constantin Dumitrache ◽  
Ovidiu Gabriel Bratu ◽  
...  

There is an increased interest and more studies highlight the fact that bone strength depends not only on bone tissue quantity, but also on its quality, which is characterized by the geometry and shape of bones, trabecular bone microarchitecture, mineral content, organic matrix and bone turnover. Fibrillar type I collagen is the major organic component of bone matrix, providing form and a stable template for mineralization. The biomedical importance of collagen as a biomaterial for medical and cosmetic purposes and the improvement of the molecular, cellular biology and analytical technologies, led to increasing interest in establishing the structure of this protein and in setting of the relationships between sequence, structure, and function. Bone collagen crosslinking chemistry and its molecular packing structure are considered to be distinct features. This unique post-translational modifications provide to the fibrillar collagen matrices properties such as tensile strength and viscoelasticity. Understanding the complex structure of bone type I collagen as well as the dynamic nature of bone tissues will help to manage new therapeutic approaches to bone diseases.


2020 ◽  
Vol 27 (6) ◽  
pp. 838-853 ◽  
Author(s):  
Madalina Icriverzi ◽  
Valentina Dinca ◽  
Magdalena Moisei ◽  
Robert W. Evans ◽  
Mihaela Trif ◽  
...  

: Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. : Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. : This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.


2020 ◽  
Vol 21 (20) ◽  
pp. 7655
Author(s):  
Michèle Roy ◽  
Sophie Roux

Small guanosine triphosphate hydrolases (GTPases) of the Rab family are involved in plasma membrane delivery, fusion events, and lysosomal and autophagic degradation pathways, thereby regulating signaling pathways and cell differentiation and function. Osteoclasts are bone-resorbing cells that maintain bone homeostasis. Polarized vesicular trafficking pathways result in the formation of the ruffled border, the osteoclast’s resorptive organelle, which also assists in transcytosis. Here, we reviewed the different roles of Rab GTPases in the endomembrane machinery of osteoclasts and in bone diseases caused by the dysfunction of these proteins, with a particular focus on autophagy and bone resorption. Understanding the molecular mechanisms underlying osteoclast-related bone disease development is critical for developing and improving therapies.


2021 ◽  
Vol 22 (18) ◽  
pp. 10097
Author(s):  
Divakar S. Karanth ◽  
Macey L. Martin ◽  
Lexie S. Holliday

Osteoclasts differentiate from hematopoietic cells and resorb the bone in response to various signals, some of which are received directly from noncellular elements of the bone. In vitro, adherence to the bone triggers the reduction of cell–cell fusion events between osteoclasts and the activation of osteoclasts to form unusual dynamic cytoskeletal and membrane structures that are required for degrading the bone. Integrins on the surface of osteoclasts are known to receive regulatory signals from the bone matrix. Regulation of the availability of these signals is accomplished by enzymatic alterations of the bone matrix by protease activity and phosphorylation/dephosphorylation events. Other membrane receptors are present in osteoclasts and may interact with as yet unidentified signals in the bone. Bone mineral has been shown to have regulatory effects on osteoclasts, and osteoclast activity is also directly modulated by mechanical stress. As understanding of how osteoclasts and other bone cells interact with the bone has emerged, increasingly sophisticated efforts have been made to create bone biomimetics that reproduce both the structural properties of the bone and the bone’s ability to regulate osteoclasts and other bone cells. A more complete understanding of the interactions between osteoclasts and the bone may lead to new strategies for the treatment of bone diseases and the production of bone biomimetics to repair defects.


Author(s):  
Yang Liu ◽  
Mengmeng Duan ◽  
Daimo Guo ◽  
Shiyi Kan ◽  
L i Zhang ◽  
...  

Abstract Osteocytes are the main sensitive cells in bone remodeling due to their potent functional cell processes from the mineralized bone matrix to the bone surface and the bone marrow. Neighboring osteocytes communicate with each other by these cell processes to achieve molecular exchange through gap junction channels. Platelet-derived growth factor-AA (PDGF-AA) has been reported to enhance bone tissue remodeling by promoting cell proliferation, migration, and autocrine secretion in osteoid cell linage. However, the effect of PDGF-AA on intercellular communication between osteocytes is still unclear. In the present study, we elucidated that PDGF-AA could enhance the formation of dendritic processes of osteocytes and the gap junctional intercellular communication by promoting the expression of connexin43 (Cx43). This modulation process was mainly dependent on the activation of phosphorylation of Akt protein by phosphatidylinositol 3-kinase (PI3K)/Akt (also known as protein kinase B, PKB) signaling. Inhibition of PI3K/Akt signaling decreased the Cx43 expression induced by PDGF-AA. These results establish a bridge between PDGF-AA and cell–cell communication in osteocytes, which could help us understand the molecular exchange between bone cells and fracture healing.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Rinaldo Florencio-Silva ◽  
Gisela Rodrigues da Silva Sasso ◽  
Estela Sasso-Cerri ◽  
Manuel Jesus Simões ◽  
Paulo Sérgio Cerri

Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.


Endocrinology ◽  
2011 ◽  
Vol 152 (4) ◽  
pp. 1412-1422 ◽  
Author(s):  
Yun Ma ◽  
Jeffry S. Nyman ◽  
Huan Tao ◽  
Heather H. Moss ◽  
Xiangli Yang ◽  
...  

Abstract The sympathetic nervous system is a physiological regulator of bone homeostasis. Autonomic nerves are indeed present in bone, bone cells express the β2-adrenergic receptors (β2AR), and pharmacological or genetic disruption of sympathetic outflow to bone induces bone gain in rodents. These recent findings implied that conditions that affect β2AR signaling in osteoblasts and/or sympathetic drive to bone may contribute to bone diseases. In this study, we show that dexamethasone stimulates the expression of the β2AR in differentiated primary calvarial osteoblasts, as measured by an increase in Adrβ2 mRNA and β2AR protein level after short-term dexamethasone treatment. Isoproterenol-induced cAMP accumulation and the expression of the β2AR target gene Rankl were also significantly increased after dexamethasone pretreatment, indicating that dexamethasone promotes the responsiveness of differentiated osteoblasts to adrenergic stimulation. These in vitro results led to the hypothesis that glucocorticoid-induced bone loss, provoked by increased endogenous or high-dose exogenous glucocorticoids given for the treatment of inflammatory diseases, might, at least in part, be mediated by increased sensitivity of bone-forming cells to the tonic inhibitory effect of sympathetic nerves on bone formation or their stimulatory effect on bone resorption. Supporting this hypothesis, both pharmacological and genetic β2AR blockade in mice significantly reduced the bone catabolic effect of high-dose prednisolone in vivo. This study emphasizes the importance of sympathetic nerves in the regulation of bone homeostasis and indicates that this neuroskeletal signaling axis can be modulated by hormones or drugs and contribute to enhance pathological bone loss.


2020 ◽  
Vol 27 (7) ◽  
pp. 1151-1169 ◽  
Author(s):  
Yi Zhang ◽  
Guojing Luo ◽  
Xijie Yu

Background: Intercellular crosstalk among osteoblast, osteoclast, osteocyte and chondrocyte is involved in the precise control of bone homeostasis. Disruption of this cellular and molecular signaling would lead to metabolic bone diseases such as osteoporosis. Currently a number of anti-osteoporosis interventions are restricted by side effects, complications and long-term intolerance. This review aims to summarize the bone cellular communication involved in bone remodeling and its usage to develop new drugs for osteoporosis. Methods: We searched PubMed for publications from 1 January 1980 to 1 January 2018 to identify relevant and latest literatures, evaluation and prospect of osteoporosis medication were summarized. Detailed search terms were ‘osteoporosis’, ‘osteocyte’, ‘osteoblast’, ‘osteoclast’, ‘bone remodeling’, ‘chondrocyte’, ‘osteoporosis treatment’, ‘osteoporosis therapy’, ‘bisphosphonates’, ‘denosumab’, ‘Selective Estrogen Receptor Modulator (SERM)’, ‘PTH’, ‘romosozumab’, ‘dkk-1 antagonist’, ‘strontium ranelate’. Results: A total of 170 papers were included in the review. About 80 papers described bone cell interactions involved in bone remodeling. The remaining papers were focused on the novel advanced and new horizons in osteoporosis therapies. Conclusion: There exists a complex signal network among bone cells involved in bone remodeling. The disorder of cell-cell communications may be the underlying mechanism of osteoporosis. Current anti-osteoporosis therapies are effective but accompanied by certain drawbacks simultaneously. Restoring the abnormal signal network and individualized therapy are critical for ideal drug development.


2021 ◽  
Vol 6 (1) ◽  
pp. 28
Author(s):  
Carla Palumbo ◽  
Marzia Ferretti

Osteocytes are the most abundant bone cells, entrapped inside the mineralized bone matrix. They derive from osteoblasts through a complex series of morpho-functional modifications; such modifications not only concern the cell shape (from prismatic to dendritic) and location (along the vascular bone surfaces or enclosed inside the lacuno-canalicular cavities, respectively) but also their role in bone processes (secretion/mineralization of preosseous matrix and/or regulation of bone remodeling). Osteocytes are connected with each other by means of different types of junctions, among which the gap junctions enable osteocytes inside the matrix to act in a neuronal-like manner, as a functional syncytium together with the cells placed on the vascular bone surfaces (osteoblasts or bone lining cells), the stromal cells and the endothelial cells, i.e., the bone basic cellular system (BBCS). Within the BBCS, osteocytes can communicate in two ways: by means of volume transmission and wiring transmission, depending on the type of signals (metabolic or mechanical, respectively) received and/or to be forwarded. The capability of osteocytes in maintaining skeletal and mineral homeostasis is due to the fact that it acts as a mechano-sensor, able to transduce mechanical strains into biological signals and to trigger/modulate the bone remodeling, also because of the relevant role of sclerostin secreted by osteocytes, thus regulating different bone cell signaling pathways. The authors want to emphasize that the present review is centered on the morphological aspects of the osteocytes that clearly explain their functional implications and their role as bone orchestrators.


2021 ◽  
Vol 22 (12) ◽  
pp. 6429
Author(s):  
Xia Xu ◽  
Shuyu Liu ◽  
Hua Liu ◽  
Kang Ru ◽  
Yunxian Jia ◽  
...  

Piezo channels are mechanosensitive ion channels located in the cell membrane and function as key cellular mechanotransducers for converting mechanical stimuli into electrochemical signals. Emerged as key molecular detectors of mechanical forces, Piezo channels’ functions in bone have attracted more and more attention. Here, we summarize the current knowledge of Piezo channels and review the research advances of Piezo channels’ function in bone by highlighting Piezo1′s role in bone cells, including osteocyte, bone marrow mesenchymal stem cell (BM-MSC), osteoblast, osteoclast, and chondrocyte. Moreover, the role of Piezo channels in bone diseases is summarized.


Sign in / Sign up

Export Citation Format

Share Document