Cellular Communication in Bone Homeostasis and the Related Anti-osteoporotic Drug Development

2020 ◽  
Vol 27 (7) ◽  
pp. 1151-1169 ◽  
Author(s):  
Yi Zhang ◽  
Guojing Luo ◽  
Xijie Yu

Background: Intercellular crosstalk among osteoblast, osteoclast, osteocyte and chondrocyte is involved in the precise control of bone homeostasis. Disruption of this cellular and molecular signaling would lead to metabolic bone diseases such as osteoporosis. Currently a number of anti-osteoporosis interventions are restricted by side effects, complications and long-term intolerance. This review aims to summarize the bone cellular communication involved in bone remodeling and its usage to develop new drugs for osteoporosis. Methods: We searched PubMed for publications from 1 January 1980 to 1 January 2018 to identify relevant and latest literatures, evaluation and prospect of osteoporosis medication were summarized. Detailed search terms were ‘osteoporosis’, ‘osteocyte’, ‘osteoblast’, ‘osteoclast’, ‘bone remodeling’, ‘chondrocyte’, ‘osteoporosis treatment’, ‘osteoporosis therapy’, ‘bisphosphonates’, ‘denosumab’, ‘Selective Estrogen Receptor Modulator (SERM)’, ‘PTH’, ‘romosozumab’, ‘dkk-1 antagonist’, ‘strontium ranelate’. Results: A total of 170 papers were included in the review. About 80 papers described bone cell interactions involved in bone remodeling. The remaining papers were focused on the novel advanced and new horizons in osteoporosis therapies. Conclusion: There exists a complex signal network among bone cells involved in bone remodeling. The disorder of cell-cell communications may be the underlying mechanism of osteoporosis. Current anti-osteoporosis therapies are effective but accompanied by certain drawbacks simultaneously. Restoring the abnormal signal network and individualized therapy are critical for ideal drug development.

2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Rinaldo Florencio-Silva ◽  
Gisela Rodrigues da Silva Sasso ◽  
Estela Sasso-Cerri ◽  
Manuel Jesus Simões ◽  
Paulo Sérgio Cerri

Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.


2020 ◽  
Vol 27 (6) ◽  
pp. 838-853 ◽  
Author(s):  
Madalina Icriverzi ◽  
Valentina Dinca ◽  
Magdalena Moisei ◽  
Robert W. Evans ◽  
Mihaela Trif ◽  
...  

: Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. : Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. : This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 89
Author(s):  
Haemin Kim ◽  
Brian Oh ◽  
Kyung-Hyun Park-Min

Bone is a dynamic tissue and is constantly being remodeled by bone cells. Metabolic reprogramming plays a critical role in the activation of these bone cells and skeletal metabolism, which fulfills the energy demand for bone remodeling. Among various metabolic pathways, the importance of lipid metabolism in bone cells has long been appreciated. More recent studies also establish the link between bone loss and lipid-altering conditions—such as atherosclerotic vascular disease, hyperlipidemia, and obesity—and uncover the detrimental effect of fat accumulation on skeletal homeostasis and increased risk of fracture. Targeting lipid metabolism with statin, a lipid-lowering drug, has been shown to improve bone density and quality in metabolic bone diseases. However, the molecular mechanisms of lipid-mediated regulation in osteoclasts are not completely understood. Thus, a better understanding of lipid metabolism in osteoclasts can be used to harness bone cell activity to treat pathological bone disorders. This review summarizes the recent developments of the contribution of lipid metabolism to the function and phenotype of osteoclasts.


2020 ◽  
Vol 21 (17) ◽  
pp. 6377
Author(s):  
Anna-Jasmina Donaubauer ◽  
Lisa Deloch ◽  
Ina Becker ◽  
Rainer Fietkau ◽  
Benjamin Frey ◽  
...  

The bone is a complex organ that is dependent on a tight regulation between bone formation by osteoblasts (OBs) and bone resorption by osteoclasts (OCs). These processes can be influenced by environmental factors such as ionizing radiation (IR). In cancer therapy, IR is applied in high doses, leading to detrimental effects on bone, whereas radiation therapy with low doses of IR is applied for chronic degenerative and inflammatory diseases, with a positive impact especially on bone homeostasis. Moreover, the effects of IR are of particular interest in space travel, as astronauts suffer from bone loss due to space radiation and microgravity. This review summarizes the current state of knowledge on the effects of IR on bone with a special focus on the influence on OCs and OBs, as these cells are essential in bone remodeling. In addition, the influence of IR on the bone microenvironment is discussed. In summary, the effects of IR on bone and bone remodeling cells strongly depend on the applied radiation dose, as differential results are provided from in vivo as well as in vitro studies with varying doses of IR. Furthermore, the isolated effects of IR on a single cell type are difficult to determine, as the bone cells and bone microenvironment are building a tightly regulated network, influencing on one another. Therefore, future research is necessary in order to elucidate the influence of different bone cells on the overall radiation-induced effects on bone.


Endocrinology ◽  
2011 ◽  
Vol 152 (4) ◽  
pp. 1412-1422 ◽  
Author(s):  
Yun Ma ◽  
Jeffry S. Nyman ◽  
Huan Tao ◽  
Heather H. Moss ◽  
Xiangli Yang ◽  
...  

Abstract The sympathetic nervous system is a physiological regulator of bone homeostasis. Autonomic nerves are indeed present in bone, bone cells express the β2-adrenergic receptors (β2AR), and pharmacological or genetic disruption of sympathetic outflow to bone induces bone gain in rodents. These recent findings implied that conditions that affect β2AR signaling in osteoblasts and/or sympathetic drive to bone may contribute to bone diseases. In this study, we show that dexamethasone stimulates the expression of the β2AR in differentiated primary calvarial osteoblasts, as measured by an increase in Adrβ2 mRNA and β2AR protein level after short-term dexamethasone treatment. Isoproterenol-induced cAMP accumulation and the expression of the β2AR target gene Rankl were also significantly increased after dexamethasone pretreatment, indicating that dexamethasone promotes the responsiveness of differentiated osteoblasts to adrenergic stimulation. These in vitro results led to the hypothesis that glucocorticoid-induced bone loss, provoked by increased endogenous or high-dose exogenous glucocorticoids given for the treatment of inflammatory diseases, might, at least in part, be mediated by increased sensitivity of bone-forming cells to the tonic inhibitory effect of sympathetic nerves on bone formation or their stimulatory effect on bone resorption. Supporting this hypothesis, both pharmacological and genetic β2AR blockade in mice significantly reduced the bone catabolic effect of high-dose prednisolone in vivo. This study emphasizes the importance of sympathetic nerves in the regulation of bone homeostasis and indicates that this neuroskeletal signaling axis can be modulated by hormones or drugs and contribute to enhance pathological bone loss.


2020 ◽  
Vol 319 (6) ◽  
pp. C980-C990
Author(s):  
Laura Carminati ◽  
Giulia Taraboletti

Thrombospondins (TSPs) are a family of five multimeric matricellular proteins. Through a wide range of interactions, TSPs play pleiotropic roles in embryogenesis and in tissue remodeling in adult physiology as well as in pathological conditions, including cancer development and metastasis. TSPs are active in bone remodeling, the process of bone resorption (osteolysis) and deposition (osteogenesis) that maintains bone homeostasis. TSPs are particularly involved in aberrant bone remodeling, including osteolytic and osteoblastic skeletal cancer metastasis, frequent in advanced cancers such as breast and prostate carcinoma. TSPs are major players in the bone metastasis microenvironment, where they finely tune the cross talk between tumor cells and bone resident cells in the metastatic niche. Each TSP family member has different effects on the differentiation and activity of bone cells—including the bone-degrading osteoclasts and the bone-forming osteoblasts—with different outcomes on the development and growth of osteolytic and osteoblastic metastases. Here, we overview the involvement of TSP family members in the bone tissue microenvironment, focusing on their activity on osteoclasts and osteoblasts in bone remodeling, and present the evidence to date of their roles in bone metastasis establishment and growth.


Author(s):  
Jesus Medical Delgado-Calle ◽  
Teresita Bellido

Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone as well as in distant tissues. Osteocytes are a significant source of molecules that regulate bone homeostasis by integrating mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of various bone therapeutics used in the clinic. Herein, we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematological and metastatic cancers in the skeleton.


2020 ◽  
Vol 22 (1) ◽  
pp. 77-104
Author(s):  
Aditi Sharma ◽  
Lalit Sharma ◽  
Rohit Goyal

: Bone is one of the dynamic tissues in the human body that undergoes continuous remodelling through subsequent actions of bone cells, osteoclasts, and osteoblasts. Several signal transduction pathways are involved in the transition of mesenchymal stem cells into osteoblasts. These primarily include Runx2, ATF4, Wnt signaling and sympathetic signalling. The differentiation of osteoclasts is controlled by M-CSF, RANKL, and costimulatory signalling. It is well known that bone remodelling is regulated through receptor activator of nuclear factor-kappa B ligand followed by the binding to RANK, which eventually induces the differentiation of osteoclasts. The resorbing osteoclasts secrete TRAP, cathepsin K, MMP-9 and gelatinase to digest the proteinaceous matrix of type I collagen and form a saucer-shaped lacuna along with resorption tunnels in the trabecular bone. Osteoblasts secrete a soluble decoy receptor, osteoprotegerin that prevents the binding of RANK/RANKL and thus moderating osteoclastogenesis. Moreover, bone homeostasis is also regulated by several growth factors, cytokines, calciotropic hormones, parathyroid hormone and sex steroids. The current review presents a correlation of the probable molecular targets underlying the regulation of bone mass and the role of essential metabolic elements in bone remodelling. Targeting these signaling pathways may help design newer therapies for treating bone diseases.


2019 ◽  
Vol 14 (3) ◽  
pp. 239-243 ◽  
Author(s):  
Zhen Zhang ◽  
Hao Wen ◽  
Xiaobin Yang ◽  
Ke Zhang ◽  
Baorong He ◽  
...  

Bone homeostasis is strictly regulated by balanced activity of bone-forming osteoblasts and bone-resorbing osteoclasts.Disruption of the balance of activity between osteoblasts and osteoclasts leads to various metabolic bone diseases. Osteoclasts are cells of hematopoietic origin that they are large, multinucleated cells formed by the fusion of precursor cells of monocyte/macrophage lineage, they are unique cells that degrade the bone matrix, activation of transcription factors nuclear factoractivated T cells c1 (NFATc1) is required for sufficient osteoclast differentiation and it plays the role of a master transcription regulator of osteoclast differentiation, meanwhile, NFATc1 could be employed to elicit anabolic effects on bone. In this review, we have summarized the various mechanisms that control NFATc1 regulation during osteoclast and osteoblast differentiation as well as a new strategy for promoting bone regeneration in osteopenic disease.


Sign in / Sign up

Export Citation Format

Share Document