Crystal structure and X-ray diffraction data of a new hexagonal perovskite compound, Ba4CuNb3O12

2011 ◽  
Vol 26 (3) ◽  
pp. 244-247
Author(s):  
N. Kumada ◽  
W. Zhang ◽  
Q. Dong ◽  
T. Mochizuki ◽  
Y. Yonesaki ◽  
...  

A new barium copper niobate, Ba4CuNb3O12, was successfully prepared by high-temperature solid-state reaction in an inert atmosphere. Rietveld-refinement analysis of the XRD data of the compound showed that it has the 8H-type hexagonal perovskite structure with space group P63/mmc (#194), a = 5.830(1) Å, c = 19.123(1) Å, and chemical composition of Ba4Cu1.84Nb2.16O12-δ.

2017 ◽  
Vol 72 (2) ◽  
pp. 153-158 ◽  
Author(s):  
Sebastian Bräuchle ◽  
Hubert Huppertz

AbstractLi3Y(BO3)2 was prepared by high-temperature solid state synthesis at 900°C in a platinum crucible from lithium carbonate, boric acid, and yttrium(III) oxide. The compound crystallizes monoclinically in the space group P21/c (no. 14) (Z=4) isotypically to Li3Gd(BO3)2. The structure was refined from single-crystal X-ray diffraction data: a=8.616(3), b=6.416(3), c=10.014(2) Å, β=116.6(2)°, V=494.9(3) Å3, R1=0.0211, and wR2=0.0378 for all data. The crystal structure of Li3Y(BO3)2 consists of [Y2O14] dinuclear units, which are interconnected to each other by planar B(1)O3 groups and LiO4 tetrahedra via common edges and corners along the a axis.


2017 ◽  
Vol 72 (12) ◽  
pp. 959-965 ◽  
Author(s):  
Sebastian Bräuchle ◽  
Markus Seibald ◽  
Hubert Huppertz

AbstractLi3K3Eu7(BO3)9 was prepared by high-temperature solid state synthesis at 900°C in a platinum crucible from lithium carbonate, potassium carbonate, boric acid, and europium(III) oxide. The title compound crystallizes in the orthorhombic space group Pca21 (no. 29) (Z=4). The structure was refined from single-crystal X-ray diffraction data: a=21.126(2), b=6.502(2), c=17.619(2) Å, V=2420.1(2) Å3, R1=0.0183 and wR2=0.0412 for all data. The crystal structure of Li3K3Eu7(BO3)9 is isotypic to Li3K3Y7(BO3)9 featuring isolated BO3 units and LiO6 octahedra forming [Li3B4O21] units in the ac plane, which are linked by additional BO3 units. The K+ and Eu3+ cations are arranged in the cavities of the structure.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


2018 ◽  
Vol 74 (5) ◽  
pp. 623-627 ◽  
Author(s):  
Sviatoslav Baranets ◽  
Hua He ◽  
Svilen Bobev

Three isostructural transition-metal arsenides and germanides, namely niobium nickel arsenide, Nb0.92(1)NiAs, niobium cobalt arsenide, NbCoAs, and niobium nickel germanide, NbNiGe, were obtained as inadvertent side products of high-temperature reactions in sealed niobium containers. In addition to reporting for the very first time the structures of the title compounds, refined from single-crystal X-ray diffraction data, this article also serves as a reminder that niobium containers may not be suitable for the synthesis of ternary arsenides and germanides by traditional high-temperature reactions. Synthetic work involving alkali or alkaline-earth metals, transition or early post-transition metals, and elements from groups 14 or 15 under such conditions may yield Nb-containing products, which at times could be the major products of such reactions.


Author(s):  
Hongqiang Cui ◽  
Yongze Cao ◽  
Lei Zhang ◽  
Yuhang Zhang ◽  
Siying Ran ◽  
...  

Er3+ with different concentrations doped K2Yb(PO4)(MoO4) phosphors were prepared by a solid-state reaction method, and the layered orthorhombic crystal structure of the samples was confirmed by X-ray diffraction (XRD). Under...


1995 ◽  
Vol 10 (4) ◽  
pp. 296-299 ◽  
Author(s):  
S. T. Misture ◽  
C. Park ◽  
R. L. Snyder ◽  
B. Jobst ◽  
B. Seebacher

Several compositions of the solid solutions (CaxSr1−x)CuO2 and (CaxSr1−x)2CuO3, both of which are found as minor phases in the high-temperature superconductors, were prepared by solid-state reaction. X-ray powder-diffraction patterns for three compositions of (CaxSr1−x)CuO2 and two for (CaxSr1−x)2CuO3 are presented.


2009 ◽  
Vol 64 (7) ◽  
pp. 875-878 ◽  
Author(s):  
Hamdi Ben Yahia ◽  
Etienne Gaudin ◽  
Jacques Darriet

The new compound AgMnPO4 has been synthesized by a solid-state reaction route. Its crystal structure was determined from single-crystal X-ray diffraction data. AgMnPO4 crystallizes with triclinic symmetry, space group P1̄, a = 9.6710(6), b = 5.695(2), c = 6.629(3) Å , α = 102.55(3), β = 105.85(2), γ = 80.70(2)◦, and Z = 4. Its structure is built up from MnO6, MnO5 and PO4 polyhedra forming tunnels filled with silver atoms.


2020 ◽  
Vol 18 (11) ◽  
pp. 14-18
Author(s):  
Abbas K. Saadon ◽  
Kareem A. Jasim ◽  
Auday H. Shaban

The high temperature superconductor’s compounds are one of the hot spot field of science, due to their applications in industries. Hg0.8Sb0.2Ba2Ca2Cu3O8+δ and Hg0.8Sb0.2Ba2Ca1Cu2O6+δ, were manufactured using a doable-step of solid state reaction method. The samples were sintered at 800 ° C. The transition temperatures Tc are found from electrically resistively by using four probe techniques. The resistivity become zero when the transition temperature Tc(offset) have 131 and 119 K, and the onset temperature Tc(onset) have 139 K for Hg0.8Sb0.2Ba2Ca2Cu3O8+δ and 132 K for Hg0.8Sb0.2Ba2Ca1Cu2O6+δ. Analysis of X-ray diffraction showed a tetragonal structure with lattice parameters changes for all samples.


1995 ◽  
Vol 10 (3) ◽  
pp. 165-169 ◽  
Author(s):  
W. Pitschke ◽  
W. Bieger ◽  
G. Krabbes ◽  
U. Wiesner

The crystallographic data of YBa2Cu3O7−δ, Y2BaCuO5, BaCu2O2, and YBa4Cu3O9 at high temperatures and p(O2)<10 Pa have been derived on the basis of HT-XRD measurements. Whereas Y2BaCuO5 expands nearly isotropically, YBa2Cu3O7−δ and BaCu2O2 show anisotropic expansions. Furthermore, the first decomposition step of the considered compounds at p(O2)<10 Pa was observed. BaCu2O2 melts congruently at T ≍ 1273 K and Y2BaCuO5 decomposes via a peritectic reaction into Y2O3, Y2BaO4 and melts at T ≍ 1323 K. A solid-state reaction into Y2BaCuO5 and BaCu2O2 was indicated for YBa2Cu3O7−δ at T ≍ 1123 K. Because YBa4Cu3O9 becomes unstable at T ≍ 1123 K, this compound cannot be formed by the primary decomposition reaction of YBa2Cu3O7−δ


2018 ◽  
Vol 73 (2) ◽  
pp. 99-103 ◽  
Author(s):  
Lu Pan ◽  
Xiaozhan Yang ◽  
Chaoyue Xiong ◽  
Dashen Deng ◽  
Chunlin Qin ◽  
...  

AbstractA series of new red-orange emission phosphors Na2BaMg(PO4)2:Pr3+ were synthesised by a high-temperature solid-state reaction. The crystal structure and photoluminescence properties of these samples were characterised by X-ray diffraction and spectroscopic measurements. This compound holds P3̅m1 space group of the trigonal system with the lattice parameters of hexagonal cell a=0.5304(3) nm and c=0.6989(3) nm. The phosphor emits the strongest peak at 606 nm when excited by 449 nm. The average Commission Internationale de l’Eclairage chromaticity coordinates calculated for the phosphors are (0.52, 0.46). The results demonstrate the potential application of these phosphors in solid-state lighting and other fields.


Sign in / Sign up

Export Citation Format

Share Document