Analysis of Specific Interfaces in Thin Films by X-Ray Fluorescence Using Interference Effect in Total Reflection

1995 ◽  
Vol 39 ◽  
pp. 695-700
Author(s):  
Kenji Sakurai ◽  
Atsuo Iida

It has been proposed that the interference effect in grazing incidence/exit X-ray fluorescence can be used as an analytical tool. Though these total reflection related measurements have been widely used because of their inherent high sensitivity to the surface of materials, the interference in case of thin films is most likely to be considered difficult to analyze. The present paper describes the use of the interference effect to provide additional capability to enhance information on a specific interface of a thin film. Detailed interpretation of the angular resolved fluorescence tells us at which interface an element of interest is localized. It can be applied to the thin film of only a few layers or non-periodic multilayers where a regular standing wave is not generated.

Author(s):  
Jonathan Ogle ◽  
Daniel Powell ◽  
Eric Amerling ◽  
Detlef Matthias Smilgies ◽  
Luisa Whittaker-Brooks

<p>Thin film materials have become increasingly complex in morphological and structural design. When characterizing the structure of these films, a crucial field of study is the role that crystallite orientation plays in giving rise to unique electronic properties. It is therefore important to have a comparative tool for understanding differences in crystallite orientation within a thin film, and also the ability to compare the structural orientation between different thin films. Herein, we designed a new method dubbed the mosaicity factor (MF) to quantify crystallite orientation in thin films using grazing incidence wide-angle X-ray scattering (GIWAXS) patterns. This method for quantifying the orientation of thin films overcomes many limitations inherent in previous approaches such as noise sensitivity, the ability to compare orientation distributions along different axes, and the ability to quantify multiple crystallite orientations observed within the same Miller index. Following the presentation of MF, we proceed to discussing case studies to show the efficacy and range of application available for the use of MF. These studies show how using the MF approach yields quantitative orientation information for various materials assembled on a substrate.<b></b></p>


2019 ◽  
Vol 52 (2) ◽  
pp. 247-251
Author(s):  
Detlef-M. Smilgies

Recently, surface and thin-film studies using area detectors have become prevalent. An important class of such systems are lamellar thin films formed by small molecules, liquid crystals or semicrystalline polymers. Frequently, the lamellae align more or less parallel to the substrate. Such structures can be easily discerned by their characteristic X-ray scattering close to the incident plane. This paper describes how such patterns can be simulated, in order to extract morphological information about the thin film.


1995 ◽  
Vol 39 ◽  
pp. 659-664 ◽  
Author(s):  
Kenji Ishida ◽  
Akinori Kita ◽  
Kouichi Hayashi ◽  
Toshihisa Horiuchi ◽  
Shoichi Kal ◽  
...  

Thin film technology is rapidly evolving today, and the characterization of the thin film and its surface have become very important issue not only from scientific but also technological viewpoints. Although x-ray diffraction measurements have been used as suitable evaluation methods in crystallography studies, its application to the structural evaluation of the thin films, especially organic one having the low electron densities, is not easy due to the small amounts of scattering volume and the high obstructive scattering noise from the substrate. However, the x-ray diffraction measurements under grazing incidence will aid not only in overcoming the such problems but also in analyzing in-plane structure of the thin films. Therefore, so-called grazing incidence x-ray diffraction (GIXD) has been recognized as one of the most powerful tools for the surface and thin film studies.


1994 ◽  
Vol 356 ◽  
Author(s):  
S. G. Malhotra ◽  
Z. U. Rek ◽  
L. J. Parfitt ◽  
S. M. Yalisove ◽  
J. C. Bilello

AbstractTraditionally, the magnitude of the stress in a thin film is obtained by measuring the curvature of the film-substrate couple; however, these techniques all measure the average stress throughout the film thickness. On a microscopic level, the details of the strain distribution as a function of depth through the thickness of the film can have important consequences in governing film quality and ultimate morphology. A new method for determining the magnitude of principal strains (strain eigenvalues) as a function of x-ray penetration depth using grazing incidence x-ray scattering for a polycrystalline thin film will be described. Results are reported for two Mo metallizations ˜ 500 Å and ˜1000 Å thick sputtered onto Si {100} substrates. The magnitude of the principal strains at several penetration depths was accomplished by an analysis of the diffraction peak shifts of at least six independent {hkl} scattering vectors from the Mo thin films. An out-of-plane strain gradient was identified in both Mo films and the strain eigenvalues were found to be anisotropic in nature. This new methodology should work with a variety of thin films and hence would provide quantitative insight into the evolution of thin film microstructure.


2008 ◽  
Vol 47-50 ◽  
pp. 1117-1120
Author(s):  
G.H. Kuo ◽  
H. Paul Wang ◽  
H.H. Hsu ◽  
Chih Ju G. Jou ◽  
Y.M. Chiu ◽  
...  

In the present work, sensing of ethanol on the ZnO thin films doped with Fe (5-50%) have been investigated. Nature of the sensing species in the nanosize Fe-doped ZnO (FeZnO) thin films has also been studied by in situ extended X-ray absorption fine structure (EXAFS) spectroscopy. By XRD, it is found that ZnO and ZnFe2O4 are the main compounds in the ZnO-Fe thin films. The thin film containing 5% of Fe has a high sensitivity (Rair/Rethanol>80) when sensing of ethanol at 300 K. On the contrary, the thin films with Fe fractions of 20-50% have a very low sensitivity to ethanol (Rair/Rethanol<15). In the presence of ethanol, the EXAFS spectra show that the bond distances of Zn-O and Fe-O in the thin films are 1.90 and 1.98 Å, respectively and restored to 1.91 and 1.97 Å in the absence of ethanol.


2019 ◽  
Author(s):  
Jonathan Ogle ◽  
Daniel Powell ◽  
Eric Amerling ◽  
Detlef Matthias Smilgies ◽  
Luisa Whittaker-Brooks

<p>Thin film materials have become increasingly complex in morphological and structural design. When characterizing the structure of these films, a crucial field of study is the role that crystallite orientation plays in giving rise to unique electronic properties. It is therefore important to have a comparative tool for understanding differences in crystallite orientation within a thin film, and also the ability to compare the structural orientation between different thin films. Herein, we designed a new method dubbed the mosaicity factor (MF) to quantify crystallite orientation in thin films using grazing incidence wide-angle X-ray scattering (GIWAXS) patterns. This method for quantifying the orientation of thin films overcomes many limitations inherent in previous approaches such as noise sensitivity, the ability to compare orientation distributions along different axes, and the ability to quantify multiple crystallite orientations observed within the same Miller index. Following the presentation of MF, we proceed to discussing case studies to show the efficacy and range of application available for the use of MF. These studies show how using the MF approach yields quantitative orientation information for various materials assembled on a substrate.<b></b></p>


CrystEngComm ◽  
2016 ◽  
Vol 18 (42) ◽  
pp. 8220-8228
Author(s):  
P. Ferrer ◽  
I. da Silva ◽  
I. Puente-Orench

Acetone thin films were crystallized directly from its vapour phase under UHV conditions at 120 K on two different substrates and studied them using GI-XRD.


2021 ◽  
Vol 9 ◽  
Author(s):  
Konrad Ritter ◽  
Galina Gurieva ◽  
Stefanie Eckner ◽  
Cora Preiß ◽  
Maurizio Ritzer ◽  
...  

Kesterite based materials are being researched and developed as affordable, efficient, and mechanically flexible absorber materials for thin film photovoltaics. Both (Ag,Cu)2ZnSnSe4 and Cu2Zn(Sn,Ge)Se4 based devices have shown great potential in overcoming some of the remaining challenges for further increasing the conversion efficiency of kesterite based solar cells. This study therefore investigates the long range crystallographic structure and the local atomic scale structure of technologically relevant thin films by means of grazing incidence X-ray diffraction and low temperature X-ray absorption spectroscopy. As expected, the unit cell dimensions change about an order of magnitude more than the element specific average bond lengths. In case of Cu2Zn(Sn,Ge)Se4, the thin film absorbers show a very similar behavior as Cu2Zn(Sn,Ge)Se4 powder samples previously studied. Small amounts of residual S in the thin films were taken into account in the analysis and the results imply a preferential formation of Sn-S bonds instead of Ge-S bonds. In (Ag,Cu)2ZnSnSe4, the dependence of the Ag-Se and Cu-Se bond lengths on Ag/(Ag+Cu) might indicate an energetic advantage in the formation of certain local configurations.


1991 ◽  
Vol 238 ◽  
Author(s):  
Adrian R. Powell ◽  
Jaroslav Bradler ◽  
Charles R. Thomas ◽  
Richard A. Kubiak ◽  
D. Keith Bowen ◽  
...  

ABSTRACTX-Ray reflectivity enables the determination of interface and surface roughness along with the variations present in the electron density. Total reflection X-ray fluorescence allows surface analysis with high sensitivity and quantification. By use of grazing angle x-ray fluorescence taken simultaneously with the reflectivity measurements, over a range of angles near the critical angle, it is possible in principle to produce a depth profile of each element, with a composition sensitivity of 0.0002%. A silicon-germanium single layer was used to calibrate the instrument and a Si-Ge 5- period superlattice for a demonstration measurement.


Sign in / Sign up

Export Citation Format

Share Document