scholarly journals Thick Film Temperature Sensors Using Standard Pastes

1986 ◽  
Vol 12 (2) ◽  
pp. 91-101 ◽  
Author(s):  
I. Janoska ◽  
M. R. Haskard

Standard thick film resistor pastes exhibit changes in their electrical characteristics when printed on top of dielectric layers. Of particular interest is the inherent change in their temperature coefficient of resistance. Simple temperature sensors were formed by deliberately printing thick film resistor pastes on top of larger area dielectric layers. Temperature tests carried out on these devices have shown that by selecting the correct paste combination and resistor aspect ratio stable, repeatable, temperature sensors with good linearity can be manufactured. A comparison is made of these sensors to other commercially available products currently used in the thick film industry.

2010 ◽  
Vol 2010 (1) ◽  
pp. 000752-000759
Author(s):  
Xudong Chen ◽  
W. Kinzy Jones

Glass frit is a major component of thick film resistor (TFR) for the production of hybrid circuits. More than thirty commercial lead-free glass frits with different compositions have been evaluated for developing a lead-free thick film resistor that is compatible with typical industry thick film processing and has comparable electrical properties as the lead bearing counterpart. Two glass compositions were selected out of 33 candidates for preparation of RuO2 based TFR inks, which were screen printed on alumina substrates and fired at 850°C. The preliminary results of these resistors showed that the sheet resistance spanned from 400 ohms per square (Ω/□) to 0.4 mega-ohms per square (MΩ/□) with 5–15% RuO2 and the hot temperature coefficient of resistance (HTCR) fell in a range of ±350ppm/°C.


1986 ◽  
Vol 12 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Barbara Holodnik ◽  
Abram Jakubowicz ◽  
Marian Lukaszewicz ◽  
Wolfgang Hauffe

Thick Ni-P films have been widely investigated at our Institute. This article tends to visualize by use of various microscopic methods how the growth and sintering of individual conducting grains, results in the formation of nickel dendrites responsible for the metallic character of electrical conduction.


1982 ◽  
Vol 1 (1) ◽  
pp. 24-27 ◽  
Author(s):  
I. Taitl

Fired resistors exhibit variations which are minimised by abrasive and laser trimming. The latter may cause unstable behaviour which is further aggravated by thermal shock. The chemical structure of a thick film resistor is analysed with respect to mechanical stress, and the theoretical conclusion that the coefficient of thermal expansion of the resistor should be equal to or smaller than that of the substrate is verified experimentally. The thermal behaviour of ruthenium dioxide is examined and a range of CTE values are determined for materials of varying chemical composition. The relationship between CTE and post laser trimming stability is demonstrated on four thick film resistors which differ in thermal expansion. It is pointed out that formulations with high metallic content can absorb tensile stress by elastic deformation, thus minimising the formation or propagation of laser induced cracks.


Sign in / Sign up

Export Citation Format

Share Document