Preclinical Evaluation of a Bone-Marrow Autograft Culture Procedure for Generating Lymphokine-Activated Killer Cells in Vitro

1992 ◽  
Vol 3 (suppl b) ◽  
pp. 123-127 ◽  
Author(s):  
Hans-Georg Klingemann ◽  
Heather Deal ◽  
Dianne Reid ◽  
Connie J Eaves

Despite the use of high dose chemoradiotherapy for the treatment of acute leukemia. relapse continues to be a major cause of death in patients given an autologous bone marrow transplant. Further augmentation of pretransplant chemotherapy causes life threatening toxicity to nonhematopoietic tissues and the effectiveness of currently available ex vivo purging methods in reducing the relapse rate is unclear. Recently, data from experimental models have suggested that bone marrow-derived lymphokine (IL-2)-activated killer (BM-LAK) cells might be used to eliminate residual leukemic cells both in vivo and in vitro. To evaluate this possibility clinically, a procedure was developed for culturing whole marrow harvests with IL-2 prior to use as autografts, and a number of variables examined that might affect either the generation of BM-LAK cells or the recovery of the primitive hematopoietic cells. The use of Dexter long term culture (LTC) conditions, which expose the cells to horse serum and hydrocortisone. supported LAK cell generation as effectively as fetal calf serum (FCS) -containing medium in seven-day cultures. Maintenance of BM-LAK cell activity after a further seven days of culture in the presence of IL-2 was also tested. As in the clinical setting. patients would receive IL-2 in vivo for an additional week immediately following infusion of the cultured marrow autograft. Generation ofBM-LAK activity was dependent on the presence of IL-2 and could be sustained by further incubation in medium containing IL-2. Primitive hematopoietic cells were quantitated by measuring the number of in vitro colony-forming progenitors produced after five weeks in secondary Dexter-type LTC. Maintenance of these 'LTC-initiating cells' was unaffected by lL-2 in the culture medium. These results suggest that LAK cells can be generated efficien tly in seven-day marrow autograft cultures containing IL-2 under conditions that allow the most primitive human hematopoietic cells currently detectable to be maintained.

Blood ◽  
1997 ◽  
Vol 89 (11) ◽  
pp. 3919-3924 ◽  
Author(s):  
Jean C.Y. Wang ◽  
Monica Doedens ◽  
John E. Dick

Abstract We have previously reported the development of in vivo functional assays for primitive human hematopoietic cells based on their ability to repopulate the bone marrow (BM) of severe combined immunodeficient (SCID) and nonobese diabetic/SCID (NOD/SCID) mice following intravenous transplantation. Accumulated data from gene marking and cell purification experiments indicate that the engrafting cells (defined as SCID-repopulating cells or SRC) are biologically distinct from and more primitive than most cells that can be assayed in vitro. Here we demonstrate through limiting dilution analysis that the NOD/SCID xenotransplant model provides a quantitative assay for SRC. Using this assay, the frequency of SRC in cord blood (CB) was found to be 1 in 9.3 × 105 cells. This was significantly higher than the frequency of 1 SRC in 3.0 × 106 adult BM cells or 1 in 6.0 × 106 mobilized peripheral blood (PB) cells from normal donors. Mice transplanted with limiting numbers of SRC were engrafted with both lymphoid and multilineage myeloid human cells. This functional assay is currently the only available method for quantitative analysis of human hematopoietic cells with repopulating capacity. Both CB and mobilized PB are increasingly being used as alternative sources of hematopoietic stem cells in allogeneic transplantation. Thus, the findings reported here will have important clinical as well as biologic implications.


2021 ◽  
Author(s):  
meng li ◽  
ning yang ◽  
li hao ◽  
wei zhou ◽  
lei li ◽  
...  

Abstract ObjectivesSteroid-induced osteoporosis (SIOP) is a secondary osteoporosis, which is a systemic bone disease characterized by low bone mass, bone microstructure damage, increased bone fragility, and easy fracture. However, the specific mechanism remains unclear. Glucocorticoid-induced death of osteoblasts and bone marrow mesenchymal stem cells (BMSCs) is an important factor in SIOP. Ferroptosis is an iron-dependent programmed cell death that differs from apoptosis, cell necrosis, and autophagy, which can be induced by many factors. Herein, we aimed to explore whether glucocorticoids (GCs) cause ferroptosis in BMSCs and determine possible treatment pathways and mechanisms of action. Melatonin (MT), a hormone secreted by the pineal gland, displays strong antioxidant abilities to scavenge free radicals and alleviates ferroptosis in many tissues and organs. MethodsIn this study, we used high-dose dexamethasone (DEX) to observe whether glucocorticoids induced ferroptosis in BMSCs. We then assessed whether MT can inhibit the ferroptotic pathway, thereby providing early protection against GC-induced SIOP, and investigated the signaling pathways involved.ResultsIn vitro experiments showed that MT intervention significantly improved GC-induced ferroptosis in BMSCs and significantly improved SIOP in vivo. Pathway analysis showed that MT improves ferroptosis by activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) axis. MT upregulates expression of PI3K, which is an important regulator of ferroptosis resistance. PI3K activators mimic the anti-ferroptosis effect of MT, but after blocking the PI3K pathway, the effect of MT is weakened. Obviously, MT can protect against SIOP induced by GC. Notably, even after GC-induced ferroptosis begins, MT can confer protection against SIOP. ConclusionOur research confirms that GC-induced ferroptosis is closely related to SIOP. Melatonin can inhibit ferroptosis by activating the PI3K-AKT-mTOR signaling pathway, thereby reducing the occurrence of steroid-induced osteoporosis. Therefore, MT may provide a novel strategy for preventing and treating SIOP.


Blood ◽  
1985 ◽  
Vol 66 (5) ◽  
pp. 1043-1046
Author(s):  
GD Goss ◽  
MA Wittwer ◽  
WR Bezwoda ◽  
J Herman ◽  
A Rabson ◽  
...  

Bone marrow transplantation for severe idiopathic aplastic anemia was undertaken in a patient, using his monozygotic twin brother as the donor. In spite of the use of syngeneic bone marrow, failure of engraftment occurred on two occasions. In vitro studies demonstrated that natural killer (NK) cells from the recipient markedly inhibited the growth of donor bone marrow granulocyte progenitor cells. On a third attempt, successful bone marrow engraftment was achieved following high-dose cyclophosphamide, which has previously been shown to be inhibitory to NK cells. We conclude that NK cell activity may play an important role in bone marrow failure as well as being responsible for at least some cases of aplastic anemia.


2003 ◽  
Vol 3 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Kristi A Haskins ◽  
Scott M Schlauder ◽  
James H Holda

Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 624-634 ◽  
Author(s):  
JE Dick ◽  
S Kamel-Reid ◽  
B Murdoch ◽  
M Doedens

Abstract The ability to transfer new genetic material into human hematopoietic cells provides the foundation for characterizing the organization and developmental program of human hematopoietic stem cells. It also provides a valuable model in which to test gene transfer and long-term expression in human hematopoietic cells as a prelude to human gene therapy. At the present time such studies are limited by the absence of in vivo assays for human stem cells, although recent descriptions of the engraftment of human hematopoietic cells in immune-deficient mice may provide the basis for such an assay. This study focuses on the establishment of conditions required for high efficiency retrovirus- mediated gene transfer into human hematopoietic progenitors that can be assayed in vitro in short-term colony assays and in vivo in immune- deficient mice. Here we report that a 24-hour preincubation of human bone marrow in 5637-conditioned medium, before infection, increases gene transfer efficiency into in vitro colony-forming cells by sixfold; interleukin-6 (IL-6) and leukemia inhibitory factor (LIF) provide the same magnitude increase as 5637-conditioned medium. In contrast, incubation in recombinant growth factors IL-1, IL-3, and granulocyte- macrophage colony-stimulating factor increases gene transfer efficiency by 1.5- to 3-fold. Furthermore, preselection in high concentrations of G418 results in a population of cells significantly enriched for G418- resistant progenitors (up to 100%). These results, obtained using detailed survival curves based on colony formation in G418, have been substantiated by directly detecting the neo gene in individual colonies using the polymerase chain reaction. Using these optimized protocols, human bone marrow cells were genetically manipulated with a neo retrovirus vector and transplanted into immune-deficient bg/nu/xid mice. At 1 month and 4 months after the transplant, the hematopoietic tissues of these animals remained engrafted with genetically manipulated human cells. More importantly, G418-resistant progenitors that contained the neo gene were recovered from the bone marrow and spleen of engrafted animals after 4 months. These experiments establish the feasibility of characterizing human stem cells using the unique retrovirus integration site as a clonal marker, similar to techniques developed to elucidate the murine stem cell hierarchy.


Blood ◽  
1996 ◽  
Vol 88 (8) ◽  
pp. 2859-2870 ◽  
Author(s):  
OJ Borge ◽  
V Ramsfjell ◽  
OP Veiby ◽  
MJ Jr Murphy ◽  
S Lok ◽  
...  

The recently cloned c-mpl ligand, thrombopoietin (Tpo), has been extensively characterized with regard to its ability to stimulate the growth, development, and ploidy of megakaryocyte progenitor cells and platelet production in vitro and in vivo. Primitive hematopoietic progenitors have been shown to express c-mpl, the receptor for Tpo. In the present study, we show that Tpo efficiently promotes the viability of a subpopulation of Lin-Sca-1+ bone marrow progenitor cells. The ability of Tpo to maintain viable Lin-Sca-1+ progenitors was comparable to that of granulocyte colony-stimulating factor and interleukin-1, whereas stem cell factor (SCF) promoted the viability of a higher number of Lin-Sca-1+ progenitor cells when incubated for 40 hours. However, after prolonged (> 40 hours) preincubation, the viability-promoting effect of Tpo was similar to that of SCF. An increased number of progenitors surviving in response to Tpo had megakaryocyte potential (37%), although almost all of the progenitors produced other myeloid cell lineages as well, suggesting that Tpo acts to promote the viability of multipotent progenitors. The ability of Tpo to promote viability of Lin-Sca-1+ progenitor cells was observed when cells were plated at a concentration of 1 cell per well in fetal calf serum-supplemented and serum-depleted medium. Finally, the DNA strand breakage elongation assay showed that Tpo inhibits apoptosis of Lin-Sca-1+ bone marrow cells. Thus, Tpo has a potent ability to promote the viability and suppress apoptosis of primitive multipotent progenitor cells.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3659-3659
Author(s):  
Abhinav Diwan ◽  
Andrew G. Koesters ◽  
Amy M. Odley ◽  
Theodosia A. Kalfa ◽  
Gerald W. Dorn

Abstract Steady-state and dynamic regulation of erythrocyte production occurs by altering the balance of cell-survival versus apoptosis signaling in maturing erythroblasts. Previously, the pro-apoptotic factor Nix was identified as a critical death signal in normal erythropoietic homeostasis, acting in opposition to erythroblast-survival signaling by erythropoietin and Bcl-xl. However, the role of Nix in stress-erythropoiesis is not known. Here, by comparing the consequences of erythropoietin administration, acute phenylhydrazine-induced anemia, and aging in wild-type and Nix-deficient mice, we show that complete absence of Nix, or its genetic ablation specifically in hematopoietic cells, mimics the effects of erythropoietin (Epo). Both Nix ablation and Epo treatment increase early erythroblasts in spleen and bone marrow and increase the number of circulating reticulocytes, while maintaining a pool of mature erythroblasts as an “erythropoietic reserve”. As compared with WT, Nix null mice develop polycythemia more rapidly after Epo treatment, consistent with enhanced sensitivity to erythropoietin observed in vitro. After phenylhydrazine administration, anemia in Nix-deficient mice is less severe and recovers more rapidly than in WT mice, despite lower endogenous Epo levels. Anemic stress depletes mature erythroblasts in both WT and Nix null mice, but Nix null mice with basal erythroblastosis are resistant to anemic stress. These findings show that Nix null mice have greatly expanded erythroblast reserve and respond normally to Epo- and anemia-stimulated induction of erythropoiesis. However, the hematocrits of young adult Nix null mice are not elevated, and these mice paradoxically develop anemia as they age with decreased hemoglobin content (10g/dl) and hematocrit (36%; at 80±3 weeks of age) compared to WT mice (13g/dl and 46%; 82±5 weeks of age), inspite of persistent erythoblastosis observed in the bone marrow and spleen. Nix null erythrocytes, which are macrocytic and exhibit membrane abnormalities typically seen in immature cells or with accelerated erythropoiesis, demonstrate shorter life span with a half life of 5.2±0.6 days in the peripheral circulation by in vivo biotin labeling (as compared with a half life of 11.7±0.9 days in WT), and increased osmotic fragility as compared with normal erythrocytes. This suggests that production and release of large numbers of reticulocytes in Nix null mice can decrease erythrocyte survival. To rule out a non-hematopoietic consequence of Nix ablation that contributes to or causes increased erythrocyte fragility and in vivo consumption, such as primary hypersplenism, we undertook Tie2-Cre mediated conditional Nix gene ablation. Nixfl/fl + Tie2-Cre mice (hematopoietic-cell specific Nix null) develop erythroblastosis with splenomegaly, reticulocytosis, absence of polycythemia and increased erythrocyte fragility; suggesting that erythroblastosis and accelerated erythrocyte turnover are a primary consequence of Nix ablation in hematopoietic cells. Hence, dis-inhibition of erythropoietin-mediated erythroblast survival pathways by Nix ablation enhances steady-state and stress-mediated erythropoiesis.


1988 ◽  
Vol 69 (3) ◽  
pp. 403-409 ◽  
Author(s):  
Richard E. George ◽  
William G. Loudon ◽  
Richard P. Moser ◽  
Janet M. Bruner ◽  
Peter A. Steck ◽  
...  

✓ Short-term stimulation of nonantigen-primed peripheral blood mononuclear leukocytes with interleukin-2 generates a population of oncolytic effectors designated “lymphokine-activated killer” (LAK) cells. These LAK cells express potent lytic activity against a wide spectrum of fresh or cultured autochthonous (patient's own) and allogeneic (unrelated) tumors, yet specifically spare normal tissues. In this study, cells derived from primitive neuroectodermal tumors of the posterior fossa (PNET-PF) were examined for their sensitivity to LAK cytolysis utilizing an in vitro 4-hour chromium-51-release assay. Five early-passage cell lines, derived from primary PNET-PF, demonstrated significant sensitivity to LAK cell cytolysis. Lysis was equally effective in culture medium and cerebrospinal fluid. Three freshly excised PNET-PF exhibited similar susceptibility to lysis by autochthonous LAK cells. Greatly increased expansion of LAK cell cultures could be achieved by short-term stimulation with monoclonal anti-CD3 antibodies in addition to interleukin-2 activation. These findings constitute the preliminary in vitro foundations for potential intrathecal adoptive immunotherapy of PNET-PF with LAK cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Catalina-Iolanda Marinescu ◽  
Mihai Bogdan Preda ◽  
Carmen Alexandra Neculachi ◽  
Evelyn Gabriela Rusu ◽  
Sinziana Popescu ◽  
...  

There is continuing interest in therapeutic applications of bone marrow-derived mesenchymal stromal cells (MSC). Unlike human counterparts, mouse MSC are difficult to propagate in vitro due to their contamination with adherent hematopoietic cells that overgrow the cultures. Here we investigated the properties of these contaminating cells, referred to as bone marrow-derived proliferating hematopoietic cells (BM-PHC). The results showed that both BM-PHC and MSC had strong immunomodulatory properties on T cells in vitro, with PGE2 and NO involved in this mechanism. However, BM-PHC were stronger immunomodulators than MSC, with CCL-6 identified as putative molecule responsible for superior effects. In vivo studies showed that, in contrast to BM-PHC, MSC endorsed a more rapid xenograft tumor rejection, thus indicating a particular context in which only MSC therapy would produce positive outcomes. In conclusion, bone marrow contains two cell populations with immunomodulatory properties, which are valuable sources for therapeutic studies in specific disease-relevant contexts.


Sign in / Sign up

Export Citation Format

Share Document