scholarly journals Quadrilateral Finite Element Monte Carlo Simulation of Complex Shape Compound FETs

VLSI Design ◽  
1998 ◽  
Vol 6 (1-4) ◽  
pp. 127-130
Author(s):  
S. Babiker ◽  
A. Asenov ◽  
J. R. Barker ◽  
S. P. Beaumont

The complex recess and gate shape of modem compound FETs greatly affect the device parasitics and therefore impose the need for proper description of the device geometry and surface conditions in any practical device simulations. In this paper we describe a new Monte Carlo (MC) module incorporated in our Heterojunction 2D Finite element FET simulator H2F [1]. The module combines realistic quadrilateral finite-element description of the device geometry with realistic particle simulation of the non-equilibrium hot carrier transport in short recess gate compound FETs. A Single Programme Multiple Data (SPMD) parallel approach makes it possible to use our MC simulator for practical design work, generating the necessary I-V characteristics in parallel. The capabilities of the finite element MC module are illustrated in example simulations of a 200nm pseudomorphic HEMT fabricated in the Nanoelectronics Research Centre of Glasgow University.

2015 ◽  
Vol 14 (2) ◽  
pp. 382-397 ◽  
Author(s):  
Pyry Kivisaari ◽  
Jani Oksanen ◽  
Jukka Tulkki ◽  
Toufik Sadi

Author(s):  
A. Marathe ◽  
D. G. Walker

Miniaturization of microelectronic devices has lead to many new issues not seen in larger structures, such as hot carrier effects and interfacial effects. In power MOSFETs, degradation of the transconductance can occur over the lifetime of a device. This decrease in performance is a result of hot carriers in the channel region scattering at a Si/SiO2 interface that has been passivated with hydrogen. Eventually hot carriers liberate the hydrogen, leaving silicon bonds with an entirely different scattering cross section. The current work presents a Monte Carlo simulation of carrier transport in silicon near an interface. Scattering parameters at the interface are parameterized and studied. It was found that electron mobility, which is proportional to transconductance, is a function of the energy loss rate and type of scattering at the interface. Results indicate that dangling bonds and H-Si bonds can be characterized by different scattering mechanisms.


VLSI Design ◽  
1998 ◽  
Vol 8 (1-4) ◽  
pp. 313-317
Author(s):  
S. Babiker ◽  
A. Asenov ◽  
N. Cameron ◽  
S. P. Beaumont ◽  
J. R. Barker

In this paper we described a complete methodology to extract the RF performance of ‘real’ compound FETs from time domain Ensemble Monte-Carlo (EMC) simulations which can be used for practical device design. The methodology is based on transient finite element EMC simulation of realistic device geometry. The extraction of the terminal current is based on the Ramo-Shockley theorem. Parasitic elements like the gate and contact resistances are included in the RF analysis at the post-processing stage. Example of the RF analysis of pseudomorphic HEMTs illustrates our approach.


1986 ◽  
Vol 138 (2) ◽  
pp. 717-725
Author(s):  
L. Reggiani ◽  
Rossella Brunetti ◽  
E. Normantas

2016 ◽  
Vol 58 (3) ◽  
pp. 269-279 ◽  
Author(s):  
Hassan S. Hedia ◽  
Saad M. Aldousari ◽  
Ahmed K. Abdellatif ◽  
Gamal S. Abdelhaffez

Sign in / Sign up

Export Citation Format

Share Document