scholarly journals Permanent Magnetic System Design for the Wall-Climbing Robot

2006 ◽  
Vol 3 (3) ◽  
pp. 151-159 ◽  
Author(s):  
W. Shen ◽  
J. Gu ◽  
Y. Shen

This paper presents the design and analysis of the permanent magnetic system for a wall-climbing robot with permanent magnetic tracks. Based on the behaviour of gecko lizards, the architecture of the robot was designed and built, including the structure of the adhesion mechanism, the mechanical architecture and the anti-toppling mechanism. The permanent magnetic adhesion mechanism and the tracked locomotion mechanism were employed in this kind of wall-climbing robot. Through static and dynamic force analysis of the robot under different situations, design requirements for the adhesion mechanism were derived. Two different types of structures were put forward for the permanent magnetic units and are further discussed in this paper. These two types of structures are also analysed in detail. In addition, a finite-element method was used to verify the results of magnetic units. Finally, two wall-climbing robots, equipped with different magnetic systems described previously, are explained and their applications are discussed in this paper.

2013 ◽  
Vol 300-301 ◽  
pp. 531-536 ◽  
Author(s):  
Yong Chen ◽  
Chang Ming Wang

In order to satisfy the requirements on payload ability and maneuverability of the wall-climbing robot, a novel permanent magnetic adhesion system based on the linear Halbach array is designed. The permanent magnetic adhesion system and the wheel locomotion mechanism are employed in the robot system. By static and dynamic force analysis of the robot, design requirements about adhesion system are derived. The optimal dimensions of the mechanism are obtained using numerical modeling and parameter approximation method of first order partial derivative of dependent variables. Finally, the adhesion mechanism has been constructed and the maximum and minimum adhesion forces are measured and compared with numerical simulation and a good agreement is found.


2012 ◽  
Vol 236-237 ◽  
pp. 556-562 ◽  
Author(s):  
Rong Gang Yue ◽  
Shao Ping Wang

To replace human workers in dangerous environments or difficult-to-access places, climbing robots with the ability to travel on different types of surfaces (floors, walls, ceilings) and to walk between such surfaces were developed. The most important technology for a climbing robot is how to resist gravity, and adhere to surfaces. This paper presents mainly six types of adhesion technologies to ensure climbing robot sticks to wall surfaces: magnetic adhesion, vacuum suction techniques, attraction force generators, grasping grippers, bio-mimetic approaches inspired by climbing animals, and compliant electroadhesion, et al. Moreover, this paper represents advantages and limitations of adhesion technologies.


Author(s):  
Pongsiri Borijindakul ◽  
Aihong Ji ◽  
Zhendong Dai ◽  
Stanislav N. Gorb ◽  
Poramate Manoonpong

Developing climbing robots for smooth vertical surfaces (e.g., glass) is one of the most challenging problems in robotics. Here, the adequate functioning of an adhesive foot is an essential factor for successful locomotion performance. Among the various technologies (such as dry adhesion, wet adhesion, magnetic adhesion, and pneumatic adhesion), bio-inspired dry adhesion has been actively studied and successfully applied to climbing robots. Thus, this review focuses on the characteristics of two different types of foot microstructures, namely spatula-shaped and mushroom-shaped, capable of generating such adhesion. These are the most used types of foot microstructures in climbing robots for smooth vertical surfaces. Moreover, this review shows that the spatula-shaped feet are particularly suitable for massive and one-directional climbing robots, whereas mushroom-shaped feet are primarily suitable for light and all-directional climbing robots. Consequently, this study can guide roboticists in selecting the right adhesive foot to achieve the best climbing ability for future robot developments.


2017 ◽  
Vol 27 (14) ◽  
pp. 1750216 ◽  
Author(s):  
Guoyuan Qi ◽  
Jianbing Hu

The disadvantage of a nondimensionalized model of a permanent-magnet synchronous Motor (PMSM) is identified. The original PMSM model is transformed into a Kolmogorov system to aid dynamic force analysis. The vector field of the PMSM is analogous to the force field including four types of torque — inertial, internal, dissipative, and generalized external. Using the feedback thought, the error torque between external torque and dissipative torque is identified. The pitchfork bifurcation of the PMSM is performed. Four forms of energy are identified for the system — kinetic, potential, dissipative, and supplied. The physical interpretations of the decomposition of force and energy exchange are given. Casimir energy is stored energy, and its rate of change is the error power between the dissipative energy and the energy supplied to the motor. Error torque and error power influence the different types of dynamic modes. The Hamiltonian energy and Casimir energy are compared to find the function of each in producing the dynamic modes. A supremum bound for the chaotic attractor is proposed using the error power and Lagrange multiplier.


2013 ◽  
Vol 415 ◽  
pp. 506-509
Author(s):  
Wei Jie Wang ◽  
Rong He ◽  
Xing Qiao Deng

To study the tooth load distribution, the stress,strength and other issues of the non-backlash double-roller enveloping hourglass worm(NDEHW) drive, a innovative method based on finite element method and LS-DYNA software is used to do dynamic force simulation analysis.The results show that the worm gearing has good transmission performance and engagement performance, the strength and stiffness of the worm gearing does meet the design requirements. All of these work will provid a theoretical foundation and practical experience for actual design and manufacture.


2020 ◽  
pp. 7-10
Author(s):  
A.Ya. Krasil'nikov ◽  
A.A. Krasilnikov ◽  
D.V. Taranov

The possibility of applying the standard calculation of the shear force of thin high-coercive neodymium— iron—boron permanent magnets in magnetic systems and magnetic couplings is considered. A correction factor is proposed for calculating the shear force in systems with thin magnets, which allows at the stage of developing sealed equipment to calculate the shear force of permanent magnets in these systems. Keywords: magnetic system, magnetic coupling, permanent magnet, shear force. [email protected]


Author(s):  
Stefano Seriani ◽  
Lorenzo Scalera ◽  
Alessandro Gasparetto ◽  
Paolo Gallina

Sign in / Sign up

Export Citation Format

Share Document