scholarly journals Static Standing Trunk Sway Assessment in Amputees – Effects of Sub-Threshold Stimulation

2007 ◽  
Vol 4 (1) ◽  
pp. 37-40 ◽  
Author(s):  
L. Ming-Yih ◽  
S. Kok-Soon ◽  
L. Chih-Feng

Sub-threshold electrical stimulation can enhance the sensitivity of the human somatosensory system to improve the balance control capability of elderly was shown in recent rehabilitation articles. The purpose of this study was to evaluate the postural sway of trans-tibial amputees when performing single leg quiet standing on firm surface. Four unilateral trans-tibial amputees who consecutively wore prosthetics over 2 years were recruited in this study. Subjects performed single leg quiet standing trails with sub-threshold electrical stimulation applied at the quadriceps muscle during the trails. Spatial co-ordinates for the determination kinematic data (sway distance) of the center of mass (COM) on second sacral (S2) were collected using an ultrasound-based Zebris CMS-HS system. The single leg quiet standing test is measure considered to assess postural steadiness in a static position by a spatial measurement. The common notion is that a better postural steadiness, i.e. less postural sway, allows for longer time single leg quiet standing. However, there is lack of evidence how postural steadiness during single leg quiet standing changes over time. In this article, we hypothesized that the static balance of single leg quiet standing could be improved for providing proprioceptive neuromuscular facilitation using sub-sensory stimulation in amputees. To test this hypothesis, a computerized sub-threshold low-level electrical stimulation device was developed and proposed for clinical study. Experimental results show that reduction in all of the postural sway indices (constant time sway length, max sway distance and average sway distance) and increase in single leg support time index during single leg quiet standing by applying sub-sensory stimulation. The single leg quiet standing test findings suggest that sub-threshold electrical stimulation rehabilitation strategies may be effective in improving static balance performance for amputees.

2007 ◽  
Vol 31 (4) ◽  
pp. 342-352 ◽  
Author(s):  
Ming-Yih Lee ◽  
Chih-Feng Lin ◽  
Kok-Soon Soon

Sub-sensory electrical or mechanical stimulation can enhance the sensitivity of the human somatosensory system to improve the balance control capabilities of elderly. In addition, clinical studies suggest that visual-auditory biofeedback can improve sensory compensation for the elderly. This study hypothesizes that the static balance and gait performance of single leg quiet standing and treadmill walking could be improved for providing proprioceptive neuromuscular facilitation using sub-sensory stimulation and visual-auditory biofeedback in amputee subjects. To test this, a computerized foot pressure biofeedback sensory compensation system using sub-threshold low-level electrical stimulation combined with visual-auditory biofeedback was developed. Seven unilateral trans-tibial amputees who wore prostheses over 2 years were recruited. The subjects performed multiple single leg quiet standing trials with sub-sensory electrical stimulation applied at the quadriceps muscle during half of the trials. Static balance performance was characterized by using a Zebris motion analysis system to measure the sway distance and duration of the centre of mass on the second sacral (S2) of the subjects. In addition, multiple treadmill ambulatory trials with or without visual-auditory biofeedback was performed. Dynamic gait performance was characterized with a Zebris instrumented insole to measure the temporal responses of foot pressure sensors. Experimental results showed an improvement in three balance performance indices (Holding Time Index, HTI, Maximum Sway Distance Index, MSDI, and Average Sway Distance Index, ASDI) during single leg quiet standing by applying sub-sensory stimulation. The improvement ratio of these balance performance indices across subjects for single leg quiet standing tests resulted in 132.34% in HTI, 44.61% in MSDI, and 61.45% in ASDI. With visual-auditory biofeedback as a cue for heel contact and toe push-off condition during treadmill ambulation, the improvement of four dynamic gait performance measures (Double Support Period, DSP, Constant Time Cadence, CTC, Single Support Period, SSP, and Stance/Swing Ratio, SSR) in amputees was verified. This resulted in 7.89% in DSP (affected side), 5.09% in CTC, 16.67% in SSP (sound side), 45.30% in SSR (sound side), and 40.30% in SSR (affected side) respectively. These findings suggest that sub-threshold electrical stimulation and visual-auditory biofeedback rehabilitation strategies may be effective in compensating sensory loss and improving static balance and dynamic ambulation performance for amputees.


2005 ◽  
Vol 12 (2-3) ◽  
pp. 183-196 ◽  
Author(s):  
Reint H. Geuze

The development of static balance is a basic characteristic of normal motor development. Most developmental motor tests include a measure of static balance. Children with Developmental Coordination Disorder (DCD) often fail this item. This study reviews the balance problems of children with DCD. The general conclusion is drawn that under normal conditions static balance control is not a problem for children with DCD. Only in difficult, unattended, or novel situations such children seem to suffer from increased postural sway. These findings raise the question of what happens when balance is lost. The present study addresses the strength of correlation between the electromyography (EMG) and force plate signals in one-leg stance over epochs of stable and unstable balance. Four groups of children were involved in the study: two age groups and a group of children with DCD and balance problems and their controls. The results show a clear involvement of tibialis anterior and peroneus muscles in the control of lateral balance in all conditions and groups. The group of children with DCD and balance problems,however, showed a weaker coupling between EMG and corrective force compared with control children, indicating non-optimal balance control. An evaluation of the existing data in terms of evidence of specific structural deficits associated with DCD provided converging evidence that suggests cerebellar involvement.


2013 ◽  
Vol 103 (6) ◽  
pp. 516-533 ◽  
Author(s):  
Anna L. Hatton ◽  
Keith Rome ◽  
John Dixon ◽  
Denis J. Martin ◽  
Patrick O. McKeon

Footwear interventions, including shoe insoles and foot orthoses, have the capacity to enhance balance control and gait in older people. This review assessed the evidence for the effect of footwear interventions on static and dynamic balance performance and gait in older populations and explored proposed theories for underlying sensorimotor and mechanical mechanisms. We searched the Medline, EMBASE, CINAHL (the Cumulative Index to Nursing and Allied Health Literature), and AMED databases and conducted hand searches. Of 115 relevant articles screened, 14 met the predefined inclusion criteria. Articles were grouped into one of three categories based on balance task (static balance performance during quiet standing, dynamic balance performance during walking, and dynamic balance performance during perturbed standing or functional tasks) and were scored for methodological quality using the Downs and Black Quality Index tool. Footwear interventions seem to alter underlying strategies controlling static and dynamic movement patterns through a combination of sensorimotor and mechanical mechanisms in older people, including those with chronic sensory and musculoskeletal conditions. Evidence shows a consistent trend toward footwear interventions markedly improving lateral stability measures, which are predictors of falls in the elderly. In-depth investigation of neurophysiologic responses to footwear interventions is necessary to help confirm any sensorimotor adaptations. The long-term effects of footwear interventions on balance, gait, and the prevention of falls in older people require further investigation. (J Am Podiatr Med Assoc 103(6): 516–533, 2013)


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Tobias Kalisch ◽  
Jan-Christoph Kattenstroth ◽  
Sebastian Noth ◽  
Martin Tegenthoff ◽  
Hubert R. Dinse

As life expectancy continues to rise, in the future there will be an increasing number of older people prone to falling. Accordingly, there is an urgent need for comprehensive testing of older individuals to collect data and to identify possible risk factors for falling. Here we use a low-cost force platform to rapidly assess deficits in balance under various conditions. We tested 21 healthy older adults and 24 young adults during static stance, unidirectional and rotational displacement of their centre of pressure (COP). We found an age-related increase in postural sway during quiet standing and a reduction of maximal COP displacement in unidirectional and rotational displacement tests. Our data show that even low-cost computerized assessment tools allow for the comprehensive testing of balance performance in older subjects.


Author(s):  
Marie Fabre ◽  
Marine Antoine ◽  
Mathieu Germain Robitaille ◽  
Edith Ribot-Ciscar ◽  
Rochelle Ackerley ◽  
...  

Abstract Cutaneous foot receptors are important for balance control and their activation during quiet standing depends on the speed and the amplitude of postural oscillations. We hypothesized that the transmission of cutaneous input to the cortex is reduced during prolonged small postural sways, due to receptor adaptation during continued skin compression. Central mechanisms would trigger large sways to reactivate the receptors. We compared the amplitude of P50N90 somatosensory cortical potentials evoked by electrical stimulation of the foot sole during small and large sways in 16 young adults standing still with their eyes closed. We observed greater P50N90 amplitudes during large sways compared to small sways consistent with increased cutaneous transmission during large sways. Postural oscillations computed 200 ms before large sways had smaller amplitudes than those before small sways, providing sustained compression within a small foot sole area. Cortical source analyses revealed that during this interval the activity of the somatosensory areas decreased, whereas the activity of cortical areas engaged in motor planning (supplementary motor area, dorsolateral prefrontal cortex) increased. We concluded that large sways during quiet standing represent self-generated functional behavior aiming at releasing skin compression to reactivate mechanoreceptors. Such balance motor commands create sensory reafference that help control postural sway.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Angélica C. Alonso ◽  
Luis Mochizuki ◽  
Natália Mariana Silva Luna ◽  
Sérgio Ayama ◽  
Alexandra Carolina Canonica ◽  
...  

The aim of this study was to evaluate the relation between the sensory and anthropometric variables in the quiet standing.Methods. One hundred individuals (50 men, 50 women; 20–40 years old) participated in this study. For all participants, the body composition (fat tissue, lean mass, bone mineral content, and bone mineral density) and body mass, height, trunk-head length, lower limb length, and upper limb length were measured. The center of pressure was measured during the quiet standing posture, the eyes opened and closed with a force platform. Correlation and regression analysis were run to analyze the relation among body composition, anthropometric data, and postural sway.Results. The correlation analysis showed low relation between postural sway and anthropometric variables. The multiple linear regression analyses showed that the height explained 12% of the mediolateral displacement and 11% of the center of pressure area. The length of the trunk head explained 6% of displacement in the anteroposterior postural sway. During eyes closed condition, the support basis and height explained 18% of mediolateral postural sway.Conclusion. The postural control depends on body composition and dimension. This relation is mediated by the sensory information. The height was the anthropometric variable that most influenced the postural sway.


2020 ◽  
Vol 127 (4) ◽  
pp. 639-650
Author(s):  
Kohtaroh Hagio ◽  
Hiroki Obata ◽  
Kimitaka Nakazawa

The execution of cognitive tasks is known to alter postural sway during standing, but the underlying mechanisms are still debated. This study investigated how performing a mental task modified balance control during standing. We required 15 healthy adult males to maintain an upright stance under conditions of simply relaxing and maintaining normal quiet standing (control condition) or while performing a secondary cognitive task (mental arithmetic). Under each condition, we measured the participants’ center of pressure and used kinematic measurements for a quantitative evaluation of postural control modulation. We calculated the standard deviation of the joint angles (ankle, knee, and hip) and the estimated joint stiffness to measure joint mobility changes in postural control. To estimate the kinematic pattern of covariation among these joints, we used uncontrolled manifold analysis, an assessment of the strength of multijoint coordination. Compared to normal standing, executing the cognitive task while standing led to reduced movements of the ankle and hip joints. There were no significant differences in ankle stiffness or uncontrolled manifold ratios between the conditions. Our results suggest that when performing a secondary cognitive task during standing, neither changes in the modification of stiffness nor the strength of multijoint coordination (both of which preserve the center of mass position) explains changes in postural sway.


Author(s):  
Danilo Bondi ◽  
Tereza Jandova ◽  
Vittore Verratti ◽  
Moreno D’Amico ◽  
Edyta Kinel ◽  
...  

Abstract Background Strength training as neuromuscular electrical stimulation (NMES) is effective in counteracting age-related postural impairments in elderly. However, it remains unknown whether training different muscle groups would entail in different adaptations. Aim To evaluate the effect of NMES training on balance function in healthy inactive elderly, targeting paravertebral muscles, in addition to thigh muscles. Methods Eleven healthy elderly were trained with NMES for 8 week allocated to combined training (CT: quadriceps and lumbar paraspinal muscles) or to quadriceps training (QT), after completing lifestyle questionnaire and spine morphology measurements. Functional balance, static stabilometry, and isometric strength tests were assessed before and after the training period. Results and conclusion The CT group showed a greater improve in static balance control, i.e., reducing the CEA of the CoP displacement from 99 ± 38 to 76 ± 42 mm2 (Cohen’s d = 0.947). Benefits for improving static balance through CT might be due to NMES training, which increases spinal stabilization.


2018 ◽  
Vol 21 (1) ◽  
pp. 45-50
Author(s):  
Ali Yalfani ◽  
Azadeh Asgarpour ◽  
Zahra Raeisi

Background and aims: The "postural control" is one of the important abilities to maintain body balance especially during upright stances which is a basic requirement in human life. The role of proprioception in the ankle joint function is essential to maintain balance and function correctly during gate and upright stances. Fatigue is one of the essential factors disrupting the proprioception. The purpose of the present study was to compare effective interventions on plantar and ankle proprioception in balance control with and without fatigue. Methods: Twenty female college students participated in this study. The participants taped the ankle or wore three types of insoles (i.e., normal, 10-degree lateral, and medial wedge) before and after using a fatigue protocol with and without visual information. Their static and dynamic balance was evaluated by the Biodex Balance System (BBS). Data analysis was performed employing the SPSS software. Besides, the significance level was considered at 0.05. Results: The results indicated that application of wedge insoles was associated with a significant reduction of postural sway during static balance position. In addition, the 10-degree lateral wedge insole had a greater effect for improving the balance of non-visual position after using the fatigue protocol. However, there were no significant differences between taping and insole types regarding improving the dynamic balance. Conclusion: Generally, it was inferred that wedge insoles could be used to improve the static balance with and without fatigue. However, Kinesio tape had no effect on static balance. Moreover, results regarding the effectiveness of the studied interventions in relation to the dynamic balance improvement were not significant.


2006 ◽  
Vol 18 (04) ◽  
pp. 190-197 ◽  
Author(s):  
MING-YIH LEE ◽  
CHIH-FENG LIN ◽  
KOK-SOON SOON

Proprioceptive neuromuscular facilitation and foot sensory compensation are critical to balance control and ambulatory performance in below-knee amputees. Sub-sensory stimulation has been shown to be effective in enhancing the sensitivity of the human somatosensory system. In addition, visual-auditory biofeedback to improve foot sensory compensation for amputees was suggested in recent articles. The purpose of this study is to develop a new biofeedback proprioceptive neuromuscular facilitation system for improving balance control and foot sensory compensation in below-knee amputees. The proposed system functioned with sub-threshold electrical stimulation and visual-auditory biofeedback was developed for clinical study. Two unilateral trans-tibial amputees who consecutively wore prosthetics over 10 years were participated in this study. Subjects performed multiple single leg quite standing trails with sub-sensory electrical stimulation applied at the quadriceps muscle during half of the trails. Four static balance performance indices (i.e. Holding Time Index, HTI; Sway Length Index, SLI; Max Sway Distance Index, MSDI; Average Sway Distance Index, ASDI) were characterized using Zebris motion analysis system. The improvement ratio of these static balance performance indices across subjects for single leg quiet standing tests were resulted in a 209.7% in HTI, 39.1% in SLI, 24.3% in MSDI, and 65.4% in ASDI respectively. In addition, multiple treadmill ambulatory trails with or without visual-auditory biofeedback were evaluated. Four dynamic gait performance indices (i.e. Double Support Time Index, DSTI; Constant Time Cadence Index, CTCI; Single Support Time Index, SSTI; Stance/Swing Phase Index, SSPI) were characterized with Zebris instrumented insole and associated FMS analysis software. With visual-auditory biofeedback, the improvement of all four dynamic gait performance indices in below-knee amputees was verified. The improvement ratio of four gait performance indices across subjects resulted in a 14.81% in DSTI (sound side), 14.29% in DSTI (affected side), 14% in CTCI, 13.00% in SSTI (sound side), 6.02% in SSTI (affected side), 45.17% in SSPI (sound side), and 27.49% in SSPI (affected side) respectively. These findings suggest that sub-threshold electrical stimulation and visual-auditory biofeedback proprioceptive neuromuscular facilitation strategies may be effective in compensating foot sensory loss and improving balance control for below-knee amputees.


Sign in / Sign up

Export Citation Format

Share Document