scholarly journals Adsorption of Chromium Ions by Acid Activated Low Cost Carbon-Kinetic,Thermodynamic and Equilibrium Studies

2009 ◽  
Vol 6 (s1) ◽  
pp. S1-S11 ◽  
Author(s):  
B. R. Venkatraman ◽  
S. Parthasarathy ◽  
A. Kasthuri ◽  
P. Pandian ◽  
S. Arivoli

A carbonaceous adsorbent prepared from an indigenous waste, by acid treatment was tested for its efficiency in removing metal ions. The process parameters studied include agitation time, initial metal ions concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm) obtained from the Langmuir isotherm plot were found to around 30 mg/g at an initial pH of 7.0. The temperature variation study showed that the metal ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the metal ion solutions. The Langmuir and Freundlich adsorption isotherms obtained, positive ΔH0value, pH dependent results and desorption of metal ions in mineral acid suggest that the adsorption of metal ions on BBC involves chemisorption as well as physisorption mechanism.

2008 ◽  
Vol 5 (2) ◽  
pp. 187-200 ◽  
Author(s):  
S. Arivoli ◽  
M. Henkuzhali

A carbonaceous adsorbent prepared from an indigenous waste by acid treatment was tested for its efficiency in removing Rhodamine B (RDB). The parameters studied include agitation time, initial dye concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm) obtained from the Langmuir isotherm plots were 51.546, 47.236, 44.072 and 41.841 mg/g respectively at an initial pH of 7.0 at 30, 40, 50 and 60°C. The temperature variation study showed that the Rhodamine B adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the Rhodamine B solutions. Almost 90% removal of Rhodamine B was observed at 60°C. The Langmuir and Freundlich isotherms obtained, positive ΔH0value, pH dependent results and desorption of dye in mineral acid suggest that the adsorption of Rhodamine B on PSC involves physisorption mechanism.


2009 ◽  
Vol 6 (s1) ◽  
pp. S347-S357 ◽  
Author(s):  
V. Vijayakumaran ◽  
S. Arivoli ◽  
S. Ramuthai

A carbonaceous adsorbent prepared from an indigenous waste, by acid treatment was tested for its efficiency in removing nickel ion. The process parameters studied include agitation time, initial metal ion concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intraparticle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm) obtained from the Langmuir isotherm plot were found to around 43 mg/g at an initial pH of 7.0. The temperature variation study showed that the nickel ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the nickel ion solutions. The Langmuir and Freundlich adsorption isotherms obtained, positive ΔH0value, pH dependent results and desorption of metal ions in mineral acid suggest that the adsorption of nickel ion on MCC involves chemisorption as well as physisorption mechanism.


2008 ◽  
Vol 5 (4) ◽  
pp. 820-831 ◽  
Author(s):  
S. Arivoli ◽  
M. Hema ◽  
M. Karuppaiah ◽  
S. Saravanan

A carbonaceous adsorbent prepared from an indigenous waste by acid treatment was tested for its efficiency in removing chromium ion. The parameters studied include agitation time, initial chromium ion concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm) obtained from the Langmuir isotherm plots were 27.40, 26.06, 26.06 and 26.17 mg/g respectively at an initial pH of 7.0 at 30, 40, 50 and 60°C. The temperature variation study showed that the chromium ion adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the chromium ion solutions. Almost 70% removal of chromium ion was observed at 60°C. The Langmuir and Freundlich isotherms obtained, positive ∆H0value, pH dependent results and desorption of dye in mineral acid suggest that the adsorption of chromium ion on PDC involves physisorption mechanism.


2012 ◽  
Vol 9 (4) ◽  
pp. 2575-2588 ◽  
Author(s):  
R. Prabakaran ◽  
S. Arivoli

Activated carbon was synthesized from Thespesia Populnea Bark, a low cost material, by sulphuric acid activation; it was tested for its ability to eliminate malachite green in aqueous solution. The parameters studied included contact time, initial dye concentration, carbon dose, pH and temperature. The adsorption followed first order rate equation. In addition, it was found that the adsorption process was described by Freundlich and Langmuir isotherm models. Those models were applied to the equilibrium data. The absorption capacities (Qm) obtained from the Langmuir isotherm plots were 349.20, 365.43, 476.44, and 389.96 mg/g at 30°, 40°, 50°, and 60°C, respectively, at an initial pH 6.0. The temperature variation study showed that the malachite green dye absorption was endothermic and spontaneous with increased randomness at the solid solution interface. The thermodynamic parameters like ∆H°, ∆S°, and ∆G° were calculated from the slope and intercept of the linear plots.


2011 ◽  
Vol 8 (1) ◽  
pp. 185-195 ◽  
Author(s):  
P. K. Baskaran ◽  
B. R. Venkatraman ◽  
S. Arivoli

The batch removal of ferrous ion from aqueous solution using low cost adsorbents such aszea maysdust carbon(ZDC) under different experimental conditions were investigated in this study. The process parameters studied include agitation time, initial metal ion concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intraparticle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm) obtained from the Langmuir isotherm plot were found to 37.17, 38.31, 39.37 and 40.48 mg/g. The temperature variation study showed that the ferrous ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the ferrous ion solutions. The Langmuir and Freundlich adsorption isotherms obtained positive ΔH0value, pH dependent results and desorption of metal ions in mineral acid suggest that the adsorption of ferrous ion on ZDC involves physisorption mechanism.


2012 ◽  
Vol 9 (3) ◽  
pp. 1389-1399 ◽  
Author(s):  
R. Hema Krishna ◽  
A. V. V. S. Swamy

The powder of mosambi fruit peelings (PMFP) was used as an adsorbent for the removal of heavy metal like Cr (VI) from aqueous solutions was studied using batch tests. The influence of physico-chemical key parameters such as the initial metal ion concentration, pH, agitation time, adsorbent dosage, and the particle size of adsorbent has been considered in batch tests. Sorbent ability to adsorb Cr (VI) ions was examined and the mechanism involved in the process investigated. The optimum results were determined at an initial metal ion concentration was 10 mg/lit, pH=2, agitation time – 60 min, an adsorbent dose (150 mg/50 ml) and the particle size (0.6 mm). The % adsorption, Langmuir constants [Q0=7.51(mg/g) and b=1.69(mg/lit)] Freundlich constant(Kf=2.94), Lagergren rate constants (Kad(min-1)=5.75 x 10-2) for [Cr(VI)] 10 mg/lit were determined for the adsorption system as a function of sorbate concentration. The equilibrium data obtained were tested using Langmuir, Freundlich adsorption isotherm models, and the kinetic data obtained were fitted to pseudo first order model.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


1996 ◽  
Vol 31 (2) ◽  
pp. 319-328 ◽  
Author(s):  
Sameer Al-Asheh ◽  
Zdravko Duvnjak

Abstract Canola meal (CM) was tested for its ability to adsorb Cr3+ ions from solutions. It was noticed that a decrease in the CM concentration resulted in an increase of the metal ions adsorbed per unit weight of the meal. The meal adsorbed more metal when the metal concentrations in the solutions were higher. Chromium adsorption increased with temperature between 4 and 50°C. The pH values between 5 and 7 did not have much effect on the adsorption of metal by the meal. Freundlich and Langmuir isotherm models fit the equilibrium data of Cr3+ reasonably well.


2012 ◽  
Vol 18 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Jianwei Ren ◽  
Mokgadi Bopape ◽  
Katlego Setshedi ◽  
Jacob Kitinya ◽  
Maurice Onyango

This study explored the feasibility of using magnetic eggshell-Fe3O4 powder as adsorbent for the removal of Pb(II) and Cu(II) ions from aqueous solution. The metal ionsadsorption media interaction was characterized using XRD and FTIR. The effects of contact time, initial concentrations, temperature, solution pH and reusability of the adsorption media were investigated. The metal ions adsorption was fast and the amount of metal ions adsorbed increased with an increase in temperature, suggesting an endothermic adsorption. The kinetic data showed that the adsorption process followed the pseudo-second-order kinetic model. The optimal adsorption pH value was around 5.5 at which condition the equilibrium capacity was 263.2 mg/g for Pb(II) and 250.0 for Cu(II). The adsorption equilibrium data fitted very well to the Langmuir and Freundlich adsorption isotherm models. The thermodynamics of Pb(II) and Cu(II) adsorption onto the magnetic eggshell-Fe3O4 powder indicated that the adsorption was spontaneous. The reusability study has proven that magnetic eggshell-Fe3O4 powder can be employed as a low-cost and easy to separate adsorbent.


2018 ◽  
Vol 4 (3) ◽  
pp. 297-302
Author(s):  
S. Jayashree ◽  
Jeyavathana Samuel ◽  
R. Vashantha

The main objective of this study was to investigate the removal of cadmium(II) ions from aqueous solution using raw Cymbopogon citratus as an adsorbent. It was characterized by FT-IR, XRD, SEM-EDAX and its physical parameters were analyzed. Different factors such as pH, contact time, initial concentration and temperature were studied. Maximum adsorption was taken place at the optimum pH of 6 and the equilibrium data were analyzed by Langmuir, Freundlich and Temkin Isotherm models. Among those isotherm models Langmuir and Temkin were fitted well with good correlation coefficient (R2). The negative values of ΔG⁰ for all temperature shows the adsorption process for cadmium(II) ion was spontaneous in nature and feasible. The negative value of enthalpy change ΔH⁰ shows the adsorption process is exothermic and the positive value of ΔS⁰ indicates the disorderness or randomness process of adsorption. The positive value of Ea indicates the higher solution temperature favors the adsorption of metal ion onto RCC. The experimental data were analyzed by kinetic studies such as pseudo-first order, pseudo-second order and intra-particle diffusion models. Desorption was also studied and the recovery of the adsorbent was found to be 10%. Thus on the basis of these investigations the present study concludes that the raw Cymbopogon citratus (RCC) was found to be highly effective, nontoxic, environmental friendly and low cost adsorbent for the removal of toxic Cd(II) ions from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document