scholarly journals Adsorption of Nickel Ion by Low Cost Carbon-Kinetic, Thermodynamic and Equilibrium Studies

2009 ◽  
Vol 6 (s1) ◽  
pp. S347-S357 ◽  
Author(s):  
V. Vijayakumaran ◽  
S. Arivoli ◽  
S. Ramuthai

A carbonaceous adsorbent prepared from an indigenous waste, by acid treatment was tested for its efficiency in removing nickel ion. The process parameters studied include agitation time, initial metal ion concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intraparticle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm) obtained from the Langmuir isotherm plot were found to around 43 mg/g at an initial pH of 7.0. The temperature variation study showed that the nickel ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the nickel ion solutions. The Langmuir and Freundlich adsorption isotherms obtained, positive ΔH0value, pH dependent results and desorption of metal ions in mineral acid suggest that the adsorption of nickel ion on MCC involves chemisorption as well as physisorption mechanism.

2008 ◽  
Vol 5 (4) ◽  
pp. 820-831 ◽  
Author(s):  
S. Arivoli ◽  
M. Hema ◽  
M. Karuppaiah ◽  
S. Saravanan

A carbonaceous adsorbent prepared from an indigenous waste by acid treatment was tested for its efficiency in removing chromium ion. The parameters studied include agitation time, initial chromium ion concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm) obtained from the Langmuir isotherm plots were 27.40, 26.06, 26.06 and 26.17 mg/g respectively at an initial pH of 7.0 at 30, 40, 50 and 60°C. The temperature variation study showed that the chromium ion adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the chromium ion solutions. Almost 70% removal of chromium ion was observed at 60°C. The Langmuir and Freundlich isotherms obtained, positive ∆H0value, pH dependent results and desorption of dye in mineral acid suggest that the adsorption of chromium ion on PDC involves physisorption mechanism.


2009 ◽  
Vol 6 (s1) ◽  
pp. S1-S11 ◽  
Author(s):  
B. R. Venkatraman ◽  
S. Parthasarathy ◽  
A. Kasthuri ◽  
P. Pandian ◽  
S. Arivoli

A carbonaceous adsorbent prepared from an indigenous waste, by acid treatment was tested for its efficiency in removing metal ions. The process parameters studied include agitation time, initial metal ions concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm) obtained from the Langmuir isotherm plot were found to around 30 mg/g at an initial pH of 7.0. The temperature variation study showed that the metal ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the metal ion solutions. The Langmuir and Freundlich adsorption isotherms obtained, positive ΔH0value, pH dependent results and desorption of metal ions in mineral acid suggest that the adsorption of metal ions on BBC involves chemisorption as well as physisorption mechanism.


2011 ◽  
Vol 8 (1) ◽  
pp. 185-195 ◽  
Author(s):  
P. K. Baskaran ◽  
B. R. Venkatraman ◽  
S. Arivoli

The batch removal of ferrous ion from aqueous solution using low cost adsorbents such aszea maysdust carbon(ZDC) under different experimental conditions were investigated in this study. The process parameters studied include agitation time, initial metal ion concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intraparticle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm) obtained from the Langmuir isotherm plot were found to 37.17, 38.31, 39.37 and 40.48 mg/g. The temperature variation study showed that the ferrous ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the ferrous ion solutions. The Langmuir and Freundlich adsorption isotherms obtained positive ΔH0value, pH dependent results and desorption of metal ions in mineral acid suggest that the adsorption of ferrous ion on ZDC involves physisorption mechanism.


2008 ◽  
Vol 5 (2) ◽  
pp. 187-200 ◽  
Author(s):  
S. Arivoli ◽  
M. Henkuzhali

A carbonaceous adsorbent prepared from an indigenous waste by acid treatment was tested for its efficiency in removing Rhodamine B (RDB). The parameters studied include agitation time, initial dye concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm) obtained from the Langmuir isotherm plots were 51.546, 47.236, 44.072 and 41.841 mg/g respectively at an initial pH of 7.0 at 30, 40, 50 and 60°C. The temperature variation study showed that the Rhodamine B adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the Rhodamine B solutions. Almost 90% removal of Rhodamine B was observed at 60°C. The Langmuir and Freundlich isotherms obtained, positive ΔH0value, pH dependent results and desorption of dye in mineral acid suggest that the adsorption of Rhodamine B on PSC involves physisorption mechanism.


2011 ◽  
Vol 322 ◽  
pp. 436-439 ◽  
Author(s):  
Xi Chan Zhang ◽  
Xing Guang Li

Present study deals with the evaluation of biosorptive removal of copper byFlavobacterium sp.Experiments have been carried out to find the effect of various parameters such as initial pH, contact time and initial metal ion concentration. Adsorption equilibrium studies showed that Cu(II) adsorption data followed the Langmuir model, the maximum binding capacity ofwas 55.20 mg/g at pH 6.0. Kinetics of copper biosorption by Flavobacterium sp. biomass is better described by pseudo second order kinetic model. It was also clearly observed that The present study indicated thatFlavobacterium sp.biomass may be used as a cost and effective biosorbent for the removal of Cu(II) ions from wastewater.


2020 ◽  
Vol 11 (4) ◽  
pp. 11891-11904

In the present study, batch mode adsorption was carried out to investigate the adsorption capacity of dried bael flowers (Aegle marmelos) for the adsorptive removal of Cu(II) ions from aqueous solutions by varying agitation time, initial metal concentration, the dose of adsorbent, temperature, and initial pH of the Cu(II) ion solution. The percentage removal of 98.7% was observed at 50 ppm initial metal ion concentration, 0.5 g/100.00 cm3 adsorbent dosage, within the contact time of 120 minutes at 30 ºC in the pH range of 4 – 7. The sorption processes of Cu(II) ions was best described by pseudo-second-order kinetics. Langmuir isotherm had a good fit with the experimental data with 0.97 of correlation coefficient (R2), and the maximum adsorption capacity obtained was 23.14 mg g-1 at 30 ºC. The results obtained from sorption thermodynamic studies suggested that the adsorption process is exothermic and spontaneous. SEM analysis showed tubular voids on the adsorbent. FTIR studies indicated the presence of functional groups like hydroxyl, –C-O, –C=O, and amide groups in the adsorbent, which can probably involve in metal ion adsorption. Therefore, dried bael flowers can be considered an effective low-cost adsorbent for treating Cu(II) ions.


2012 ◽  
Vol 9 (3) ◽  
pp. 1389-1399 ◽  
Author(s):  
R. Hema Krishna ◽  
A. V. V. S. Swamy

The powder of mosambi fruit peelings (PMFP) was used as an adsorbent for the removal of heavy metal like Cr (VI) from aqueous solutions was studied using batch tests. The influence of physico-chemical key parameters such as the initial metal ion concentration, pH, agitation time, adsorbent dosage, and the particle size of adsorbent has been considered in batch tests. Sorbent ability to adsorb Cr (VI) ions was examined and the mechanism involved in the process investigated. The optimum results were determined at an initial metal ion concentration was 10 mg/lit, pH=2, agitation time – 60 min, an adsorbent dose (150 mg/50 ml) and the particle size (0.6 mm). The % adsorption, Langmuir constants [Q0=7.51(mg/g) and b=1.69(mg/lit)] Freundlich constant(Kf=2.94), Lagergren rate constants (Kad(min-1)=5.75 x 10-2) for [Cr(VI)] 10 mg/lit were determined for the adsorption system as a function of sorbate concentration. The equilibrium data obtained were tested using Langmuir, Freundlich adsorption isotherm models, and the kinetic data obtained were fitted to pseudo first order model.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
P. Sujatha ◽  
V. Kalarani ◽  
B. Naresh Kumar

The primary objective of the present study is to evaluate the optimization conditions such as kinetic and equilibrium isotherm models involved in the removal of Ni(II) from the aqueous solutions byTrichoderma viride. The biosorbent was characterized by FTIR and SEM. The optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, initial metal ion concentration, and temperature. The maximum Ni(II) biosorption was obtained at pH 4.5. The equilibrium data were better fit by the Langmuir isotherm model than by the Freundlich isotherm. The kinetic studies indicate that the biosorption process of the metal ion Ni(II) has followed well the pseudo-second-order model. The sum of the square errors (SSE) and chi-square (χ2) tests were also carried out to find the best fit kinetic model and adsorption isotherm. The maximum biosorption capacity (qm) ofT.viridebiomass was found to be 47.6 mg/g for Ni(II) ion. Therefore, it can be concluded thatT.viridebiomass was effective and low-cost potential adsorbent to remove the toxic metal Ni(II) from aqueous solutions. The recovery process of Ni(II) fromT.viridebiomass was found to be higher than 98% by using 0.25 M HNO3. Besides the application of removal of toxic metal Ni(II) from aqueous solutions, the biosorbentT.viridecan be reused for five consecutive sorption-desorption cycles was determined.


2017 ◽  
Vol 76 (7) ◽  
pp. 1895-1906 ◽  
Author(s):  
Sowmya Vilvanathan ◽  
S. Shanthakumar

The biosorption capability of Chrysanthemum indicum to remove nickel ions from aqueous solution in a fixed-bed column was examined in this study. Native C. indicum flower waste was improved for its biosorptive potential by pyrolysis to obtain its biochar form and, thereby, both raw (CIF-R) and biochar (CIF-BC) forms of the flower were used for Ni(II) removal. Fixed bed column studies were conducted to examine the influence of bed height (1.0–3.0 cm), flow rate (1.0–5.0 mL min−1) and initial metal ion concentration (25–75 mg L−1). The breakthrough curves (Cout/Cin vs time) were modelled using different dynamic adsorption models, viz. Adams-Bohart, Thomas and Yoon-Nelson model. Interpretation of the data revealed a favorable correlation with the Thomas model with higher R2 values and closer model-predicted and experimental biosorption capacity values. The equilibrium uptake capacity of CIF-R and CIF-BC for Ni(II) were found to be 14.02 and 29.44 mg g−1, respectively. Further, the column was regenerated using HCl as eluent, to desorb the adsorbed Ni(II) ions. The experimental results implied and affirmed the suitability of the biosorbents for nickel ion biosorption with its nature being favorable, efficient, and environmentally friendly.


2011 ◽  
Vol 71-78 ◽  
pp. 2988-2991
Author(s):  
Yuan Hong Wang ◽  
Yun Yu ◽  
Rui Qun Liu ◽  
Wei Feng Liu

Present study deals with the evaluation of biosorptive removal of nickel byFlavobacterium sp.Experiments have been carried out to find the effect of various parameters such as initial pH, contact time and initial metal ion concentration. Adsorption equilibrium studies showed that Ni(II) adsorption data followed the Langmuir model, the maximum binding capacity of Ni(II) was 64.20 mg/g at pH 7.0. Kinetics of nickel biosorption by Flavobacterium sp.biomass is better described by pseudo second order kinetic model. The equilibrium isotherm data are very well represented by Langmuir isotherm equation, which confirmed the monolayer coverage of nickel onto Flavobacterium sp.biomass. It was also clearly observed that The present study indicated thatFlavobacterium sp.biomass may be used as an inexpensive and effective biosorbent for the removal of Ni(II) ions from environmental wastewater.


Sign in / Sign up

Export Citation Format

Share Document