scholarly journals A Programmable Receiver for Communication Systems and Its Application to Impulse Radio

2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Roman Merz ◽  
Cyril Botteron ◽  
Frédéric Chastellain ◽  
Pierre-André Farine

The design of a programmable receiver for an ultra wideband (UWB) communication is presented. The receiver is using a fast analog to digital converter (ADC) and a field programmable gate array (FPGA) allowing a rapid performance evaluation for various system architectures and signal processing algorithms. To demonstrate the performance and the versatility of the receiver, a simple communication system and a localization system are implemented. The accuracy of the latter is presented for an indoor environment.

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1533 ◽  
Author(s):  
Mohammed Bahoura

This paper proposes a simple and efficient FPGA-based architecture of the overlapping/windowing and overlap-add methods for real-time FFT/IFFT-based signal processing algorithms. The analyzed signal is divided into short-time overlapping frames that are windowed before applying Fourier analysis/synthesis. Then, the original signal is reconstructed from the windowed (modified) frames using the overlap-add (OLA) technique. The proposed architecture was implemented on Field Programmable Gate Array (FPGA) using a high-level programming tool in MATLAB/SIMULINK environment. Its performance was evaluated on artificial and actual signals using objective metrics.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Yinan Yu ◽  
Jian Yang ◽  
Tomas McKelvey ◽  
Borys Stoew

Ultrawideband (UWB) technology has many advantages compared to its narrowband counterpart in many applications. We present a new compact low-cost UWB radar for indoor and through-wall scenario. The focus of the paper is on the development of the signal processing algorithms for ranging and tracking, taking into account the particular properties of the UWB CMOS transceiver and the radiation characteristics of the antennas. Theoretical analysis for the algorithms and their evaluations by measurements are presented in the paper. The ranging resolution of this UWB radar has achieved 1-2 mm RMS accuracy for a moving target in indoor environment over a short range, and Kalman tracking algorithm functions well for the through-wall detection.


2014 ◽  
pp. 27-33
Author(s):  
Mounir Bouhedda ◽  
Mokhtar Attari

The aim of this paper is to introduce a new architecture using Artificial Neural Networks (ANN) in designing a 6-bit nonlinear Analog to Digital Converter (ADC). A study was conducted to synthesise an optimal ANN in view to FPGA (Field Programmable Gate Array) implementation using Very High-speed Integrated Circuit Hardware Description Language (VHDL). Simulation and tests results are carried out to show the efficiency of the designed ANN.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 73
Author(s):  
Van-Thanh Ta ◽  
Van-Phuc Hoang ◽  
Van-Phu Pham ◽  
Cong-Kha Pham

The time-interleaved analog-to-digital converters (TIADCs), performance is seriously affected by channel mismatches, especially for the applications in the next-generation communication systems. This work presents an improved all-digital background calibration technique for TIADCs by combining the Hadamard transform for calibrating gain and timing mismatches and averaging for offset mismatch cancellation. The numerical simulation results show that the proposed calibration technique completely suppresses the spurious images due to the channel mismatches at the output spectrum, which increases the spurious-free dynamic range (SFDR) and signal-to-noise and distortion ratio (SNDR) by 74 dB and 43.7 dB, respectively. Furthermore, the hardware co-simulation on the field programmable gate array (FPGA) platform is performed to confirm the effectiveness of the proposed calibration technique. The simulation and experimental results clarify the improvement of the proposed calibration technique in the TIADC’s performance.


Sign in / Sign up

Export Citation Format

Share Document