scholarly journals Distributed Source Localization Based on TOA Measurements in Wireless Sensor Networks

2009 ◽  
Vol 2009 ◽  
pp. 1-4 ◽  
Author(s):  
Wanzhi Qiu ◽  
Efstratios Skafidas

We study the problem of source localization in multihop wireless sensor networks. A fully distributed algorithm based on sensor measurements of time of arrivals (TOAs) is proposed. In contrast to centralized methods where all TOA measurements are transmitted via certain routes to a central location (the sink) for processing, the proposed method distributes the processing among the relay nodes on the routes to the sink. Fusion strategies are proposed so that the raw and intermediate data are progressively processed, and only the refined results are further relayed. As a result, the proposed scheme has improved flexibility and scalability since it does not impose any special requirements on the sink node. The proposed distributed strategy also has the potential to save energy and bandwidth due to reduced radio transmissions.

Author(s):  
Chinedu Duru ◽  
Neco Ventura ◽  
Mqhele Dlodlo

Background: Wireless Sensor Networks (WSNs) have been researched to be one of the ground-breaking technologies for the remote monitoring of pipeline infrastructure of the Oil and Gas industry. Research have also shown that the preferred deployment approach of the sensor network on pipeline structures follows a linear array of nodes, placed a distance apart from each other across the infrastructure length. The linear array topology of the sensor nodes gives rise to the name Linear Wireless Sensor Networks (LWSNs) which over the years have seen themselves being applied to pipelines for effective remote monitoring and surveillance. This paper aims to investigate the energy consumption issue associated with LWSNs deployed in cluster-based fashion along a pipeline infrastructure. Methods: Through quantitative analysis, the study attempts to approach the investigation conceptually focusing on mathematical analysis of proposed models to bring about conjectures on energy consumption performance. Results: From the derived analysis, results have shown that energy consumption is diminished to a minimum if there is a sink for every placed sensor node in the LWSN. To be precise, the analysis conceptually demonstrate that groups containing small number of nodes with a corresponding sink node is the approach to follow when pursuing a cluster-based LWSN for pipeline monitoring applications. Conclusion: From the results, it is discovered that energy consumption of a deployed LWSN can be decreased by creating groups out of the total deployed nodes with a sink servicing each group. In essence, the smaller number of nodes each group contains with a corresponding sink, the less energy consumed in total for the entire LWSN. This therefore means that a sink for every individual node will attribute to minimum energy consumption for every non-sink node. From the study, it can be concurred that energy consumption of a LWSN is inversely proportional to the number of sinks deployed and hence the number of groups created.


2021 ◽  
pp. 1-1
Author(s):  
F. Fernando Jurado-Lasso ◽  
Ken Clarke ◽  
Andres Navarro Cadavid ◽  
Ampalavanapillai Nirmalathas

Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2328 ◽  
Author(s):  
Juan Feng ◽  
Xiaozhu Shi

In target tracking wireless sensor networks, choosing a part of sensor nodes to execute tracking tasks and letting the other nodes sleep to save energy are efficient node management strategies. However, at present more and more sensor nodes carry many different types of sensed modules, and the existing researches on node selection are mainly focused on sensor nodes with a single sensed module. Few works involved the management and selection of the sensed modules for sensor nodes which have several multi-mode sensed modules. This work proposes an efficient node and sensed module management strategy, called ENSMM, for multisensory WSNs (wireless sensor networks). ENSMM considers not only node selection, but also the selection of the sensed modules for each node, and then the power management of sensor nodes is performed according to the selection results. Moreover, a joint weighted information utility measurement is proposed to estimate the information utility of the multiple sensed modules in the different nodes. Through extensive and realistic experiments, the results show that, ENSMM outperforms the state-of-the-art approaches by decreasing the energy consumption and prolonging the network lifetime. Meanwhile, it reduces the computational complexity with guaranteeing the tracking accuracy.


2018 ◽  
Vol 17 ◽  
pp. 02001
Author(s):  
Churan Tang ◽  
Linghua Zhang

A central question in wireless sensor network research is how to reduce the consumption of the energy of the sensor nodes. Theoretically, the network coding technology proposed by Ahlswede et al (2000) can improve the network reliability and network throughput, increase the robustness and save energy. Based on the classic flooding routing protocol, the present study proposes a new flooding control protocol, i.e. NC-Flooding for wireless sensor networks. NC-Flooding protocol introduces five mechanisms to enhance the efficiency of wireless sensor networks. As shown by MATLAB simulation results, NC-Flooding protocol reduces the number of broadcasts of wireless sensor networks, increases the throughput of the network and increases the bandwidth utilization. We conclude that NC-Flooding protocol reduces data forwarding cost and node energy consumption and extends nodes’ life cycle, thus increasing network utilization.


Sign in / Sign up

Export Citation Format

Share Document