scholarly journals Wing Color of Monarch Butterflies (Danaus plexippus) in Eastern North America across Life Stages: Migrants Are “Redder” than Breeding and Overwintering Stages

2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Andrew K. Davis

Monarch butterflies are famous among insects for their unique migration in eastern North America to overwinter sites in Mexico and their bright orange wing color, which has an aposematic function. While capturing migrating monarchs in northeast Georgia, USA, I noticed that many appeared to have unusually deep orange wings. I initiated the current study to compare wing hues (obtained using image analysis of scanned wings) of migrants (captured in 2005 and 2008) to samples of breeding and overwintering monarchs. Consistent with initial observations, migrants had significantly lower orange hues (reflecting deeper, redder orange colors) than breeding and overwintering monarchs. There was also a difference in hue between sexes and a relationship with wing size, such that larger monarchs had deeper, redder hues. The reasons for the color difference of migrants are not apparent, but one possibility is that the longer-lived migrant generation has denser scalation to allow for scale loss over their lifespan. Alternatively, this effect could be confined to the subpopulation of monarchs in the Southeastern United States, which may not be well represented at the Mexican overwintering sites. In any case, this discovery highlights the many questions emerging on the significance of wing color variation in this species.

2013 ◽  
Vol 280 (1768) ◽  
pp. 20131087 ◽  
Author(s):  
D. T. Tyler Flockhart ◽  
Leonard I. Wassenaar ◽  
Tara G. Martin ◽  
Keith A. Hobson ◽  
Michael B. Wunder ◽  
...  

Insect migration may involve movements over multiple breeding generations at continental scales, resulting in formidable challenges to their conservation and management. Using distribution models generated from citizen scientist occurrence data and stable-carbon and -hydrogen isotope measurements, we tracked multi-generational colonization of the breeding grounds of monarch butterflies ( Danaus plexippus ) in eastern North America. We found that monarch breeding occurrence was best modelled with geographical and climatic variables resulting in an annual breeding distribution of greater than 12 million km 2 that encompassed 99% occurrence probability. Combining occurrence models with stable isotope measurements to estimate natal origin, we show that butterflies which overwintered in Mexico came from a wide breeding distribution, including southern portions of the range. There was a clear northward progression of monarchs over successive generations from May until August when reproductive butterflies began to change direction and moved south. Fifth-generation individuals breeding in Texas in the late summer/autumn tended to originate from northern breeding areas rather than regions further south. Although the Midwest was the most productive area during the breeding season, monarchs that re-colonized the Midwest were produced largely in Texas, suggesting that conserving breeding habitat in the Midwest alone is insufficient to ensure long-term persistence of the monarch butterfly population in eastern North America.


Science ◽  
1972 ◽  
Vol 177 (4047) ◽  
pp. 426-429 ◽  
Author(s):  
L. P. Brower ◽  
P. B. McEvoy ◽  
K. L. Williamson ◽  
M. A. Flannery

2010 ◽  
Vol 7 (1) ◽  
pp. 43-46 ◽  
Author(s):  
Nathan G. Miller ◽  
Leonard I. Wassenaar ◽  
Keith A. Hobson ◽  
D. Ryan Norris

Each spring, millions of monarch butterflies ( Danaus plexippus ) migrate from overwintering sites in Mexico to recolonize eastern North America. However, few monarchs are found along the east coast of the USA until mid-summer. Brower (Brower, L. P. 1996 J. Exp. Biol. 199, 93–103.) proposed that east coast recolonization is accomplished by individuals migrating from the west over the Appalachians, but to date no evidence exists to support this hypothesis. We used hydrogen ( δ D) and carbon ( δ 13 C) stable isotope measurements to estimate natal origins of 90 monarchs sampled from 17 sites along the eastern United States coast. We found the majority of monarchs (88%) originated in the mid-west and Great Lakes regions, providing, to our knowledge, the first direct evidence that second generation monarchs born in June complete a ( trans -) longitudinal migration across the Appalachian mountains. The remaining individuals (12%) originated from parents that migrated directly from the Gulf coast during early spring. Our results provide evidence of a west to east longitudinal migration and provide additional rationale for conserving east coast populations by identifying breeding sources.


2021 ◽  
Author(s):  
Andrew K Davis ◽  
Michael S Crossley ◽  
Matthew K Moran ◽  
Jeffrey Glassberg ◽  
William E Snyder

Many insects are in clear decline, with monarch butterflies (Danaus plexippus) drawing particular attention as a flagship species. Falling numbers of overwintering monarchs are well documented, but there has been debate regarding population trends of summer breeding populations. Here, we compile a series of long-term monarch monitoring datasets, some which are analyzed here for the first time, that reveal highly variable responses across the migratory geographic range, but no broad net decline in numbers of breeding monarchs. We also did not find evidence that sampling biased towards natural sites was masking declines at disturbed sites. Overall, our results suggest a robust resiliency in summer populations that thus far has allowed recovery from losses during the winter. Thus, monarchs may not require as much breeding habitat restoration as once thought, and focus should be on conserving the fall and spring migration.


FACETS ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 238-253
Author(s):  
D. T. Tyler Flockhart ◽  
Maxim Larrivée ◽  
Kathleen L. Prudic ◽  
D. Ryan Norris

Monarch butterflies ( Danaus plexippus, Linnaeus, 1758) are comprised of two migratory populations separated by the Rocky Mountains and are renowned for their long-distance movements among the United States, Canada, and Mexico. Both populations have declined over several decades across North America prompting all three countries to evaluate conservation efforts. Monitoring monarch distribution and abundance is a necessary aspect of ongoing management in Canada where they are a species at risk. We used presence-only data from two citizen science data sets to estimate the annual breeding distribution of monarch butterflies in Canada between 2000 and 2015. Monarch breeding distribution in Canada varied widely among years owing to natural variation, and when considering the upper 95% of the probability of occurrence, the annual mean breeding distribution in Canada was 484 943 km2 (min: 173 449 km2; max: 1 425 835 km2). The area of occurrence was approximately an order of magnitude larger in eastern Canada than in western Canada. Habitat restoration for monarch butterflies in Canada should prioritize productive habitats in southern Ontario where monarchs occur annually and, therefore, likely contribute most to the long-term viability of monarchs in eastern North America. Overall, our assessment sets the geographic context to develop successful management strategies for monarchs in Canada.


Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 63 ◽  
Author(s):  
Andrew K. Davis

A recent study in this journal aimed to understand certain changes in the wintering behavior of monarch butterflies, specifically in the western subpopulation of North America [...]


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4491
Author(s):  
Julia J. Mlynarek ◽  
Terry A. Wheeler

We review the taxonomy and ecology of Chloropidae (Diptera) associated with pitcher plants (Sarraceniaceae) in North America.Tricimba wheeleriMlynarek sp.n. is described from the pitchers ofSarracenia alataAlph.Wood andS. leucophyllaRaf. in the southeastern United States (Alabama, Mississippi).Aphanotrigonum darlingtoniae(Jones) associated withDarlingtonia californicaTorr. in northern California is redescribed, including the first description of male genitalic characters. A lectotype is designated forA. darlingtoniae. Published records of other species ofTricimbaLioy in pitcher plants in North America are considered accidental or facultative occurrences; published records ofAphanotrigonumDuda as pitcher plant associates in eastern North America are probably errors in identification.


Sign in / Sign up

Export Citation Format

Share Document