scholarly journals Virus-Specific Read-Through Codon Preference Affects Infectivity of Chimeric Cucumber Green Mottle Mosaic Viruses Displaying a Dengue Virus Epitope

2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Pak-Guan Teoh ◽  
Aik-Seng Ooi ◽  
Sazaly AbuBakar ◽  
Rofina Yasmin Othman

ACucumber green mottle mosaic virus(CGMMV) was used to present a truncated dengue virus type 2 envelope (E) protein binding region from amino acids 379 to 423 (EB4). The EB4 gene was inserted at the terminal end of the CGMMV coat protein (CP) open reading frame (ORF). Read-through sequences of TMV or CGMMV, CAA-UAG-CAA-UUA, or AAA-UAG-CAA-UUA were, respectively, inserted in between the CP and the EB4 genes. The chimeric clones, pRT, pRG, and pCG+FSRTRE, were transcribed into full-length capped recombinant CGMMV transcripts. Only constructs with the wild-type CGMMV read-through sequence yielded infectious viruses following infection of host plant, muskmelon (Cucumis melo) leaves. The ratio of modified to unmodified CP for the read-through expression clone developed was also found to be approximately 1:1, higher than what has been previously reported. It was also observed that infectivity was not affected by differences in pI between the chimera and its wild counterpart. Analysis of recombinant viruses after 21-days-postinculation (dpi) revealed that deletions occurred resulting in partial reversions of the viral population to near wild type and suggesting that this would be the limiting harvest period for obtaining true to type recombinants with this construct.

2008 ◽  
Vol 82 (19) ◽  
pp. 9433-9444 ◽  
Author(s):  
Ritesh Tandon ◽  
Edward S. Mocarski

ABSTRACT Cytomegalovirus replication depends upon a betaherpesvirus-conserved 150-kDa tegument phosphoprotein (pp150; encoded by UL32) that supports the final steps in virion maturation at cytoplasmic assembly compartments. Amino acid substitutions were introduced into conserved region 1 (CR1) and CR2 of pp150, affecting a region that may interact with nucleocapsids. Two independent CR2 point mutants (N201A and G207A) failed to support viral replication in evaluations by a transient complementation assay or after reconstruction into recombinant viruses. An assembly compartment-like cytoplasmic inclusion developed in UL32 mutant virus-infected cells that was similar to that of wild-type virus-infected cells. The cellular localization of the trans-Golgi marker Golgin-97 suggested differences in the organization of the assembly compartment compared to that of wild-type virus-infected cells. Replication-defective CR2 point mutants exhibited the same phenotype as that of a virus carrying a complete deletion of the UL32 open reading frame in these assays. Electron micrographs of fibroblasts at 3 or 5 days postinfection with a deletion mutant (ΔUL32) grown on UL32-complementing cells showed a similar number and morphology of capsids in the nucleus, but the cytoplasmic region associated with virion assembly appeared highly vesiculated and contained few recognizable nucleocapsids or complete virus particles. These data demonstrate that the principle role of pp150 is to retain nucleocapsid organization through secondary envelopment at the assembly compartment.


1986 ◽  
Vol 14 (4) ◽  
pp. 261-265
Author(s):  
YUKIO OHSUGI ◽  
KOHEI MAEDA ◽  
TOYOKO YOSHIKI ◽  
AIRO TSUBURA ◽  
AKIO OHYAMA

Genetics ◽  
2000 ◽  
Vol 155 (3) ◽  
pp. 1105-1117 ◽  
Author(s):  
W John Haynes ◽  
Kit-Yin Ling ◽  
Robin R Preston ◽  
Yoshiro Saimi ◽  
Ching Kung

Abstract Pawn mutants of Paramecium tetraurelia lack a depolarization-activated Ca2+ current and do not swim backward. Using the method of microinjection and sorting a genomic library, we have cloned a DNA fragment that complements pawn-B (pwB/pwB). The minimal complementing fragment is a 798-bp open reading frame (ORF) that restores the Ca2+ current and the backward swimming when expressed. This ORF contains a 29-bp intron and is transcribed and translated. The translated product has two putative transmembrane domains but no clear matches in current databases. Mutations in the available pwB alleles were found within this ORF. The d4-95 and d4-96 alleles are single base substitutions, while d4-662 (previously pawn-D) harbors a 44-bp insertion that matches an internal eliminated sequence (IES) found in the wild-type germline DNA except for a single C-to-T transition. Northern hybridizations and RT-PCR indicate that d4-662 transcripts are rapidly degraded or not produced. A second 155-bp IES in the wild-type germline ORF excises at two alternative sites spanning three asparagine codons. The pwB ORF appears to be separated from a 5′ neighboring ORF by only 36 bp. The close proximity of the two ORFs and the location of the pwB protein as indicated by GFP-fusion constructs are discussed.


2013 ◽  
Vol 94 (11) ◽  
pp. 2437-2448 ◽  
Author(s):  
J. M. Carr ◽  
T. Kua ◽  
J. N. Clarke ◽  
J. K Calvert ◽  
J. R. Zebol ◽  
...  

Sphingosine kinase 1 (SphK1) is a lipid kinase with important roles including regulation of cell survival. We have previously shown reduced SphK1 activity in cells with an established dengue virus type-2 (DENV-2) infection. In this study, we examined the effect of alterations in SphK1 activity on DENV-2 replication and cell death and determined the mechanisms of the reduction in SphK1 activity. Chemical inhibition or overexpression of SphK1 after established DENV-2 infection had no effect on infectious DENV-2 production, although inhibition of SphK1 resulted in enhanced DENV-2-induced cell death. Reduced SphK1 activity was observed in multiple cell types, regardless of the ability of DENV-2 infection to be cytopathic, and was mediated by a post-translational mechanism. Unlike bovine viral diarrhea virus, where SphK1 activity is decreased by the NS3 protein, SphK1 activity was not affected by DENV-2 NS3 but, instead, was reduced by expression of the terminal 396 bases of the 3′ UTR of DENV-2 RNA. We have previously shown that eukaryotic elongation factor 1A (eEF1A) is a direct activator of SphK1 and here DENV-2 RNA co-localized and co-precipitated with eEF1A from infected cells. We propose that the reduction in SphK1 activity late in DENV-2-infected cells is a consequence of DENV-2 out-competing SphK1 for eEF1A binding and hijacking cellular eEF1A for its own replication strategy, rather than a specific host or virus-induced change in SphK1 to modulate viral replication. Nonetheless, reduced SphK1 activity may have important consequences for survival or death of the infected cell.


2019 ◽  
Vol 476 (6) ◽  
pp. 991-1003 ◽  
Author(s):  
Vijaykumar Pillalamarri ◽  
Tarun Arya ◽  
Neshatul Haque ◽  
Sandeep Chowdary Bala ◽  
Anil Kumar Marapaka ◽  
...  

Abstract Natural product ovalicin and its synthetic derivative TNP-470 have been extensively studied for their antiangiogenic property, and the later reached phase 3 clinical trials. They covalently modify the conserved histidine in Type 2 methionine aminopeptidases (MetAPs) at nanomolar concentrations. Even though a similar mechanism is possible in Type 1 human MetAP, it is inhibited only at millimolar concentration. In this study, we have discovered two Type 1 wild-type MetAPs (Streptococcus pneumoniae and Enterococcus faecalis) that are inhibited at low micromolar to nanomolar concentrations and established the molecular mechanism. F309 in the active site of Type 1 human MetAP (HsMetAP1b) seems to be the key to the resistance, while newly identified ovalicin sensitive Type 1 MetAPs have a methionine or isoleucine at this position. Type 2 human MetAP (HsMetAP2) also has isoleucine (I338) in the analogous position. Ovalicin inhibited F309M and F309I mutants of human MetAP1b at low micromolar concentration. Molecular dynamics simulations suggest that ovalicin is not stably placed in the active site of wild-type MetAP1b before the covalent modification. In the case of F309M mutant and human Type 2 MetAP, molecule spends more time in the active site providing time for covalent modification.


Sign in / Sign up

Export Citation Format

Share Document