scholarly journals TNF Superfamily: A Growing Saga of Kidney Injury Modulators

2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Maria D. Sanchez-Niño ◽  
Alberto Benito-Martin ◽  
Sara Gonçalves ◽  
Ana B. Sanz ◽  
Alvaro C. Ucero ◽  
...  

Members of the TNF superfamily participate in kidney disease. Tumor necrosis factor (TNF) and Fas ligand regulate renal cell survival and inflammation, and therapeutic targeting improves the outcome of experimental renal injury. TNF-related apoptosis-inducing ligand (TRAIL and its potential decoy receptor osteoprotegerin are the two most upregulated death-related genes in human diabetic nephropathy. TRAIL activates NF-kappaB in tubular cells and promotes apoptosis in tubular cells and podocytes, especially in a high-glucose environment. By contrast, osteoprotegerin plays a protective role against TRAIL-induced apoptosis. Another family member, TNF-like weak inducer of apoptosis (TWEAK induces inflammation and tubular cell death or proliferation, depending on the microenvironment. While TNF only activates canonical NF-kappaB signaling, TWEAK promotes both canonical and noncanonical NF-kappaB activation in tubular cells, regulating different inflammatory responses. TWEAK promotes the secretion of MCP-1 and RANTES through NF-kappaB RelA-containing complexes and upregulates CCl21 and CCL19 expression through NF-kappaB inducing kinase (NIK-) dependent RelB/NF-kappaB2 complexes. In vivo TWEAK promotes postnephrectomy compensatory renal cell proliferation in a noninflammatory milieu. However, in the inflammatory milieu of acute kidney injury, TWEAK promotes tubular cell death and inflammation. Therapeutic targeting of TNF superfamily cytokines, including multipronged approaches targeting several cytokines should be further explored.

2005 ◽  
Vol 288 (2) ◽  
pp. F406-F411 ◽  
Author(s):  
R. Misseri ◽  
D. R. Meldrum ◽  
C. A. Dinarello ◽  
P. Dagher ◽  
K. L. Hile ◽  
...  

Obstruction of the upper urinary tract induces a progressive loss in renal mass through apoptotic renal cell death. Although TNF-α has been implicated in ischemia-reperfusion-induced apoptotic renal cell death, its role in obstructive renal cell apoptosis remains unknown. To study this, male Sprague-Dawley rats were subjected to left unilateral ureteral obstruction vs. sham operation. Twenty-four hours before surgery and every 84 h thereafter, rats received either vehicle or a pegylated form of soluble TNF receptor type 1 (PEG-sTNFR1). The kidneys were harvested 1, 3, or 7 days postoperatively, and tissue samples were subsequently analyzed for TNF-α (ELISA, RT-PCR), Fas ligand (RT-PCR), apoptosis (TUNEL, ELISA), and caspase 8 and 3 activity (Western blot). Renal obstruction induced increased tissue TNF-α and Fas ligand mRNA levels, TNF-α protein production, apoptotic renal tubular cell death, and elevated caspase 8 and 3 activity, whereas treatment with PEG-sTNFR1 significantly reduced obstruction-induced TNF-α production, renal tubular cell apoptosis, and caspase activity. PEG-sTNFR1 did not significantly alter Fas ligand expression. These results demonstrate that TNF-α mediates obstruction-induced renal tubular cell apoptosis and proapoptotic signaling and identify TNF-α neutralization as a potential therapeutic option for the amelioration of obstruction-induced renal injury.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 217
Author(s):  
Ramio Cabello ◽  
Miguel Fontecha-Barriuso ◽  
Diego Martin-Sanchez ◽  
Ana M. Lopez-Diaz ◽  
Susana Carrasco ◽  
...  

Background: Despite the term acute kidney injury (AKI), clinical biomarkers for AKI reflect function rather than injury and independent markers of injury are needed. Tubular cell death, including necroptotic cell death, is a key feature of AKI. Cyclophilin A (CypA) is an intracellular protein that has been reported to be released during necroptosis. We have now explored CypA as a potential marker for kidney injury in cultured tubular cells and in clinical settings of ischemia-reperfusion injury (IRI), characterized by limitations of current diagnostic criteria for AKI. Methods: CypA was analyzed in cultured human and murine proximal tubular epithelial cells exposed to chemical hypoxia, hypoxia/reoxygenation (H/R) or other cell death (apoptosis, necroptosis, ferroptosis) inducers. Urinary levels of CypA (uCypA) were analyzed in patients after nephron sparing surgery (NSS) in which the contralateral kidney is not disturbed and kidney grafts with initial function. Results: Intracellular CypA remained unchanged while supernatant CypA increased in parallel to cell death induction. uCypA levels were higher in NSS patients with renal artery clamping (that is, with NSS-IRI) than in no clamping (NSS-no IRI), and in kidney transplantation (KT) recipients (KT-IRI) even in the presence of preserved or improving kidney function, while this was not the case for urinary Neutrophil gelatinase-associated lipocalin (NGAL). Furthermore, higher uCypA levels in NSS patients were associated with longer surgery duration and the incidence of AKI increased from 10% when using serum creatinine (sCr) or urinary output criteria to 36% when using high uCypA levels in NNS clamping patients. Conclusions: CypA is released by kidney tubular cells during different forms of cell death, and uCypA increased during IRI-induced clinical kidney injury independently from kidney function parameters. Thus, uCypA is a potential biomarker of kidney injury, which is independent from decreased kidney function.


Author(s):  
Yan Liang ◽  
Xiaoli Sun ◽  
Mingjie Wang ◽  
Qingmiao Lu ◽  
Mengru Gu ◽  
...  

AbstractMacrophage accumulation and activation play an essential role in kidney fibrosis; however, the underlying mechanisms remain to be explored. By analyzing the kidney tissues from patients and animal models with kidney fibrosis, we found a large induction of PP2Acα in macrophages. We then generated a mouse model with inducible macrophage ablation of PP2Acα. The knockouts developed less renal fibrosis, macrophage accumulation, or tubular cell death after unilateral ureter obstruction or ischemic reperfusion injury compared to control littermates. In cultured macrophages, PP2Acα deficiency resulted in decreased cell motility by inhibiting Rap1 activity. Moreover, co-culture of PP2Acα−/− macrophages with tubular cells resulted in less tubular cell death attributed to downregulated Stat6-mediated tumor necrosis factor α (TNFα) production in macrophages. Together, this study demonstrates that PP2Acα promotes macrophage accumulation and activation, hence accelerates tubular cell death and kidney fibrosis through regulating Rap1 activation and TNFα production.


2003 ◽  
Vol 284 (5) ◽  
pp. F955-F965 ◽  
Author(s):  
Madhu Bhaskaran ◽  
Krishna Reddy ◽  
Neetu Radhakrishanan ◽  
Nicholas Franki ◽  
Guohua Ding ◽  
...  

ANG II has been demonstrated to play a role in the progression of tubulointerstial injury. We studied the direct effect of ANG II on apoptosis of cultured rat renal proximal tubular epithelial cells (RPTECs). ANG II promoted RPTEC apoptosis in a dose- and time-dependent manner. This effect of ANG II was attenuated by anti-transforming growth factor (TGF)-β antibody. Moreover, TGF-β triggered RPTEC apoptosis in a dose-dependent manner. ANG II also enhanced RPTEC expression of Fas and Fas ligand (FasL); furthermore, anti-FasL antibody attenuated ANG II-induced RPTEC apoptosis. In addition, ANG II increased RPTEC expression of Bax, a cell death protein. Both ANG II type 1 (AT1) and type 2 (AT2) receptor blockers inhibited ANG II-induced RPTEC apoptosis. SB-202190, an inhibitor of p38 MAPK phosphorylation, and caspase-3 inhibitor also attenuated ANG II-induced RPTEC apoptosis. ANG II enhanced RPTEC heme oxygenase (HO)-1 expression. Interestingly, pretreatment with hemin as well as curcumin (inducers of HO-1) inhibited the ANG II-induced tubular cell apoptosis; conversely, pretreatment with zinc protoporphyrin, an inhibitor of HO-1 expression, promoted the effect of ANG II. These results suggest that ANG II-induced apoptosis is mediated via both AT1 and AT2 receptors through the generation of TGF-β, followed by the transcription of cell death genes such as Fas, FasL, and Bax. Modulation of tubular cell expression of HO-1 has an inverse relationship with the ANG II-induced tubular cell apoptosis.


2019 ◽  
Vol 317 (5) ◽  
pp. F1311-F1317 ◽  
Author(s):  
Huan Yang ◽  
Ruizhao Li ◽  
Li Zhang ◽  
Shu Zhang ◽  
Wei Dong ◽  
...  

Ischemia-reperfusion (I/R)-induced acute kidney injury (I/R-AKI) favors mitochondrial permeability transition pore (mPTP) opening and subsequent cell death. Cyclophilin D (CypD) is an essential component of the mPTP, and recent findings have implicated the p53-CypD complex in cell death. To evaluate the role of p53-CypD after I/R-AKI, we tested the hypothesis that the p53-CypD complex mediates renal tubular cell apoptosis in I/R-AKI via mPTP opening. Expression of p53 and cleaved caspase-3 was significantly increased in rats subjected to I/R-AKI compared with normal controls and sham-operated controls. The underlying mechanisms were determined using an in vitro model of ATP depletion. Inhibition of mPTP opening using the CypD inhibitor cyclosporin A or siRNA for p53 in ATP-depleted HK-2 cells prevented mitochondrial membrane depolarization and reduced apoptosis. Furthermore, p53 bound to CypD in ATP-depleted HK-2 cells. These results suggest that the p53-CypD complex mediates renal tubular cell apoptosis in I/R-AKI via mPTP opening.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Melania Guerrero Hue ◽  
Cristina García Caballero ◽  
Alfonso Rubio Navarro ◽  
Juan Manuel Amaro Villalobos ◽  
Raul Rodrigues Diez ◽  
...  

Abstract Background and Aims Rhabdomyolysis is characterized by the breakdown of the skeletal muscle and the subsequent myoglobin (Mb) release into the bloodstream. A common complication of this syndrome is acute renal injury (AKI). Once filtered by the kidney, Mb causes oxidative stress, inflammation and tubular cell death. There is no specific treatment for rhabdomyolysis-AKI, so it is crucial a better understanding of this syndrome to identify new therapeutic targets. Klotho is an anti-aging protein mostly expressed by the kidney. In addition to its functions in the regulation of mineral metabolism, Klotho protects from AKI-harmful effects. However, no previous studies analyzed the role of Klotho in rhabdomyolysis. Method We performed a pre-clinical model of rhabdomyolysis in C57BL/6J mice (male, 12 weeks old, n=30) by intramuscular injection of 10 ml/kg of 50% glycerol (≥99.5% m/v). Mice were sacrificed 3 and 6 hours or 1, 3, 7 and 30 days after glycerol administration. To evaluate to beneficial effect of Klotho in rhabdomyolysis, C57BL/6J mice were injected intraperitoneally with 0.1 mg/kg recombinant mouse Klotho (1819-KL, R&D Systems), or vehicle (PBS) 30 minutes before and 1, 3 and 5 days after glycerol injection. Blood, urine and renal samples were collected to analyze renal function, Klotho/FGF23 levels, oxidative stress, inflammation, fibrosis and cell death, all of them pathological processes affecting Klotho expression. In addition, we carried out studies in murine tubular cells (MCTs) to study the molecular mechanisms involved in Klotho regulation. Results Our results indicate that rhabdomyolysis induces an early decrease in Klotho renal mRNA and protein expression as well as Klotho serum levels. Klotho levels decreased in line with augmentation of creatinine concentration, kidney inflammation (CCL2 and IL-6 mRNA expression) and tubular injury marker NGAL. Moreover, patients with rhabdomyolysis-AKI also showed lower plasma Klotho levels and increased FGF23 plasma concentration than age-matched healthy individuals. Renal klotho protein expression remained reduced one month after rhabdomyolysis-induction, in line with long term renal fibrosis and pro-inflammatory macrophage accumulation (F4/80+ cells). Exogenous recombinant Klotho administration ameliorated renal function and reduced rhabdomyolysis-mediated tubular cell death oxidative stress (4-HNE staining) and tubular injury 24h after glycerol injection. In the same line, Klotho administration during AKI development reduced long term renal fibrosis and macrophage infiltration one month later. Antioxidant therapies with N-acetylcysteine (NAC) and sulforaphane, a potent Nuclear factor erythroid-2-related factor 2 (Nrf2) inducer, reduced Mb-mediated Klotho decrease in cultured tubular cells. Inhibition of TNF-α and IL-6 with infliximab and tocilizumab, respectively, also reverted Mb-mediated Klotho decrease. Inhibition of the inflammatory NFkB and p38 pathways also prevented Mb-mediated Klotho reduction. Conclusion Our findings are the first to demonstrate decreased renal and soluble Klotho levels not only in the early phases of rhabdomyolysis-induced AKI, but also when renal function was recovered, indicating that long-term consequences of AKI, such as inflammation and fibrosis, are also involved in Klotho downregulation. In addition, our results also indicate that Klotho administration may be a potential strategy to decrease rhabdomyolysis- long term negative effects.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Marquez-Exposito ◽  
Lucia Tejedor-Santamaria ◽  
Laura Santos-Sanchez ◽  
Floris A. Valentijn ◽  
Elena Cantero-Navarro ◽  
...  

Acute kidney injury (AKI) is more frequent in elderly patients. Mechanisms contributing to AKI (tubular cell death, inflammatory cell infiltration, impaired mitochondrial function, and prolonged cell-cycle arrest) have been linked to cellular senescence, a process implicated in regeneration failure and progression to fibrosis. However, the molecular and pathological basis of the age-related increase in AKI incidence is not completely understood. To explore these mechanisms, experimental AKI was induced by folic acid (FA) administration in young (3-months-old) and old (1-year-old) mice, and kidneys were evaluated in the early phase of AKI, at 48 h. Tubular damage score, KIM-1 expression, the recruitment of infiltrating immune cells (mainly neutrophils and macrophages) and proinflammatory gene expression were higher in AKI kidneys of old than of young mice. Tubular cell death in FA-AKI involves several pathways, such as regulated necrosis and apoptosis. Ferroptosis and necroptosis cell-death pathways were upregulated in old AKI kidneys. In contrast, caspase-3 activation was only found in young but not in old mice. Moreover, the antiapoptotic factor BCL-xL was significantly overexpressed in old, injured kidneys, suggesting an age-related apoptosis suppression. AKI kidneys displayed evidence of cellular senescence, such as increased levels of cyclin dependent kinase inhibitors p16ink4a and p21cip1, and of the DNA damage response marker γH2AX. Furthermore, p21cip1 mRNA expression and nuclear staining for p21cip1 and γH2AX were higher in old than in young FA-AKI mice, as well as the expression of senescence-associated secretory phenotype (SASP) components (Il-6, Tgfb1, Ctgf, and Serpine1). Interestingly, some infiltrating immune cells were p21 or γH2AX positive, suggesting that molecular senescence in the immune cells (“immunosenescence”) are involved in the increased severity of AKI in old mice. In contrast, expression of renal protective factors was dramatically downregulated in old AKI mice, including the antiaging factor Klotho and the mitochondrial biogenesis driver PGC-1α. In conclusion, aging resulted in more severe AKI after the exposure to toxic compounds. This increased toxicity may be related to magnification of proinflammatory-related pathways in older mice, including a switch to a proinflammatory cell death (necroptosis) instead of apoptosis, and overactivation of cellular senescence of resident renal cells and infiltrating inflammatory cells.


2014 ◽  
Vol 86 (1) ◽  
pp. 86-102 ◽  
Author(s):  
Jianzhong Li ◽  
Zhuo Xu ◽  
Lei Jiang ◽  
Junhua Mao ◽  
Zhifeng Zeng ◽  
...  

2013 ◽  
Vol 305 (7) ◽  
pp. F1064-F1073 ◽  
Author(s):  
Nanmei Liu ◽  
Andreas Patzak ◽  
Jinyuan Zhang

Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) can repair acute kidney injury (AKI), but with limited effect. We test the hypothesis that CXCR4 overexpression improves the repair ability of BMSCs and that this is related to increased homing of BMSCs and increased release of cytokines. Hypoxia/reoxygenation-pretreated renal tubular epithelial cells (HR-RTECs) were used. BMSCs, null-BMSCs, and CXCR4-BMSCs were cocultured with HR-RTECs. The number of migrating BMSCs was counted. Proliferating cell nuclear antigen (PCNA) expression, cell death, and expressions of cleaved caspase-3 and Bcl-2 in cocultured HR-RTECs were measured. Cytokeratin 18 (CK18) expression and cytokine secretions of the BMSCs cultured with HR-RTEC supernatant were detected. BMSC homing, renal function, proliferation, and cell death of tubular cells were assayed in the AKI mouse model. CXCR4-BMSCs showed a remarkable expression of CXCR4. Stromal cell-derived factor-1 in the HR-RTEC supernatant was increased. Migration of BMSCs was CXCR4-dependent. Proportions of CK18+ cells in BMSCs, null-BMSCs, and CXCR4-BMSCs showed no difference. However, CXCR4 overexpression in BMSCs stimulated secretion of bone morphogenetic protein-7, hepatocyte growth factor, and interleukin 10. The neutralizing anti-CXCR4 antibody AMD3100 abolished this. In cocultured HR-RTECs the proportions of PCNA+ cells and Bcl-2 expression were enhanced; however, the proportion of annexin V+ cells and expression of cleaved caspase-3 were reduced. The in vivo study showed increased homing of CXCR4-BMSCs in kidneys, which was associated with improved renal function, reduced acute tubular necrosis scoring, accelerated mitogenic response of tubular cells, and reduced tubular cell death. The enhanced homing and paracrine actions of BMSCs with CXCR4 overexpression suggest beneficial effects of such cells in BMSC-based therapy for AKI.


Sign in / Sign up

Export Citation Format

Share Document