scholarly journals Immunobiology of African Trypanosomes: Need of Alternative Interventions

2010 ◽  
Vol 2010 ◽  
pp. 1-24 ◽  
Author(s):  
Toya Nath Baral

Trypanosomiasis is one of the major parasitic diseases for which control is still far from reality. The vaccination approaches by using dominant surface proteins have not been successful, mainly due to antigenic variation of the parasite surface coat. On the other hand, the chemotherapeutic drugs in current use for the treatment of this disease are toxic and problems of resistance are increasing (see Kennedy (2004) and Legros et al. (2002)). Therefore, alternative approaches in both treatment and vaccination against trypanosomiasis are needed at this time. To be able to design and develop such alternatives, the biology of this parasite and the host response against the pathogen need to be studied. These two aspects of this disease with few examples of alternative approaches are discussed here.

Open Biology ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 190182 ◽  
Author(s):  
Núria Sima ◽  
Emilia Jane McLaughlin ◽  
Sebastian Hutchinson ◽  
Lucy Glover

African trypanosomes escape the mammalian immune response by antigenic variation—the periodic exchange of one surface coat protein, in Trypanosoma brucei the variant surface glycoprotein (VSG), for an immunologically distinct one. VSG transcription is monoallelic, with only one VSG being expressed at a time from a specialized locus, known as an expression site. VSG switching is a predominantly recombination-driven process that allows VSG sequences to be recombined into the active expression site either replacing the currently active VSG or generating a ‘new’ VSG by segmental gene conversion. In this review, we describe what is known about the factors that influence this process, focusing specifically on DNA repair and recombination.


The pathogenic African trypanosomes have a unique mechanism for antigenic variation. Each cell is covered by a surface coat consisting of about seven million essentially identical glycoprotein molecules drawn from a large repertoire of variants, each encoded by an individual gene. Amino acid sequence variation extends throughout the molecule but reduces from the amino terminus to the carboxy terminus, where certain features, especially the grouping of cysteine residues, are quite conserved. The range of diversity within the thousand or so variant glycoprotein genes that exist in each cell is large. New variants may arise instantaneously by segmental gene conversion. Variant surface glycoproteins are synthesized with amino terminal signal sequences and hydrophobic carboxy terminal tails. The tails are extraordinarily conserved. After synthesis, they are replaced by a complex glycolipid structure in which myristic (dodecanoic) acid serves to anchor the polypeptide to the surface membrane. Enzymic cleavage of myristic acid releases variant glycoproteins from the surface coat.


2007 ◽  
Vol 6 (11) ◽  
pp. 2029-2037 ◽  
Author(s):  
Senthil Kumar A. Natesan ◽  
Lori Peacock ◽  
Keith Matthews ◽  
Wendy Gibson ◽  
Mark C. Field

ABSTRACT Immune evasion in African trypanosomes is principally mediated by antigenic variation, but rapid internalization of surface-bound immune factors may contribute to survival. Endocytosis is upregulated approximately 10-fold in bloodstream compared to procyclic forms, and surface coat remodeling accompanies transition between these life stages. Here we examined expression of endocytosis markers in tsetse fly stages in vivo and monitored modulation during transition from bloodstream to procyclic forms in vitro. Among bloodstream stages nonproliferative stumpy forms have endocytic activity similar to that seen with rapidly dividing slender forms, while differentiation of stumpy forms to procyclic forms is accompanied by rapid down-regulation of Rab11 and clathrin, suggesting that modulation of endocytic and recycling systems accompanies this differentiation event. Significantly, rapid down-regulation of endocytic markers occurs upon entering the insect midgut and expression of Rab11 and clathrin remains low throughout subsequent development, which suggests that high endocytic activity is not required for remodeling the parasite surface or for survival within the fly. However, salivary gland metacyclic forms dramatically increase expression of clathrin and Rab11, indicating that emergence of mammalian infective forms is coupled to reacquisition of a high-activity endocytic-recycling system. These data suggest that high-level endocytosis in Trypanosoma brucei is an adaptation required for viability in the mammalian host.


Author(s):  
Francis Cox ◽  
Keith Gull

Keith Vickerman was a parasitologist and protozoologist who made major contributions to our understanding of the biology of African trypanosomes, the causative agents of human sleeping sickness and nagana in cattle. His first academic post was at University College London, where he quickly mastered the techniques of electron microscopy (EM) and produced some of the best electron micrographs of parasitic protozoa at that time. He was a great believer in observation and deduction, and what began as an exercise in EM led him to investigate two of the then outstanding problems of trypanosome biology: how the parasites manage the transition from the tsetse fly vector to its mammalian host, and how they evade the host's immune response. Morphological changes, he found, were correlated with changes in the single mitochondrion and ensuring biochemical changes during the transition from a glucose-rich environment in mammalian blood to the glucose-poor tsetse gut. It was while comparing bloodstream and tsetse forms that he observed that the trypanosomes possessed a thick surface coat in the blood, which he subsequently identified as the variable antigen that was repeatedly formed and reformed and that this was the basis of antigenic variation—findings that stimulated a vast amount of interest among immunologists, biochemists and geneticists. In his later career a new problem emerged, and he found that a disease devastating stocks of the commercially important Norway lobster, Nephrops norvegicus , thought to be caused by a virus was actually caused by a protozoan, Hematodinium . Keith will always be remembered as one of the founders of modern parasitology.


Parasitology ◽  
1986 ◽  
Vol 93 (1) ◽  
pp. 99-109 ◽  
Author(s):  
A. G. Luckins ◽  
I. A. Frame ◽  
M. A. Gray ◽  
J. S. Crowe ◽  
C. A. Ross

SUMMARYCultured metacyclic forms of Trypanosoma congolense display a characteristic repertoire of metacyclic variable antigen types (M-VATs) similar to that exhibited in vitro in the tsetse fly. There appeared to be no change in expression of M-VATs in cultures of two stocks of T. congolense even after several passages, cryopreservation or long-term cultivation in vitro. Metacyclic forms transformed into mammalian forms when transferred to cultures of bovine aorta endothelial cells and whilst one stock retained expression of M-VATs without change even after 4 months, the other stock underwent antigenic variation within 14 days of transfer. Analysis of the M-VAT composition of mammalian forms of this stock using monoclonal antibodies showed that although the proportion of mammalian forms expressing certain M-VATs declined considerably, trypanosomes expressing one M-VAT increased proportionally to comprise 50 % of the population. In contrast, only small changes were seen in antigen expression in cultures of metacyclic trypanosomes from which mammalian-form cultures were derived. It was possible to produce in vitro, loss and reacquisition of variable antigen surface coat, similar to the differentiation process occurring when bloodstream trypanosomes are ingested by the tsetse fly and eventually develop into metacyclic forms.


Parasitology ◽  
1986 ◽  
Vol 92 (1) ◽  
pp. 75-82 ◽  
Author(s):  
P. R Gardiner ◽  
P Webster ◽  
L Jenni ◽  
S. K Moloo

SUMMARYCoated metacyclics ofTrypanosoma vivaxexist in the hypopharynges of infected tsetse flies and are extruded in low numbers when the flies are induced to probe onto warm slides or into medium. After extensive searching ofT. vivax-infected proboscides, and resort to a process for the examination of single, extruded, metacyclic trypanosomes, electron micro scopic evidence is presented that, contrary to an earlier report, metacyclicT. vivaxacquire a surface coat before contact with the mammalian host. SinceT. vivaxexhibits antigenic variation, the role of the surface coat in this species is likely to be functionally equivalent to the surface coat of the other tsetse-transmitted trypanosome species,T. bruceiandT. congolense.


2017 ◽  
Vol 1 (6) ◽  
pp. 593-600
Author(s):  
Cher-Pheng Ooi ◽  
Gloria Rudenko

Extracellular parasites of the mammalian bloodstream face considerable challenges including incessant assault by the immune system. African trypanosomes are consummate survivors in this inclement environment and are renowned for their supremely sophisticated strategy of antigenic variation of their protective surface coat during the course of chronic infections. Recent developments are making us realize how complex this antigenic machinery is and are allowing us to tackle previously intractable problems. However, many of the simplest (and arguably the most important) questions still remain unanswered!


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 329
Author(s):  
Andrew Holmes ◽  
Jessie Sadlon ◽  
Keith Weaver

A majority of toxins produced by type I toxin–antitoxin (TA-1) systems are small membrane-localized proteins that were initially proposed to kill cells by forming non-specific pores in the cytoplasmic membrane. The examination of the effects of numerous TA-1 systems indicates that this is not the mechanism of action of many of these proteins. Enterococcus faecalis produces two toxins of the Fst/Ldr family, one encoded on pheromone-responsive conjugative plasmids (FstpAD1) and the other on the chromosome, FstEF0409. Previous results demonstrated that overexpression of the toxins produced a differential transcriptomic response in E. faecalis cells. In this report, we identify the specific amino acid differences between the two toxins responsible for the differential response of a gene highly induced by FstpAD1 but not FstEF0409. In addition, we demonstrate that a transporter protein that is genetically linked to the chromosomal version of the TA-1 system functions to limit the toxicity of the protein.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 164 ◽  
Author(s):  
Nikita Zrelovs ◽  
Viktorija Kurbatska ◽  
Zhanna Rudevica ◽  
Ainars Leonchiks ◽  
Davids Fridmanis

Rapid spread of antibiotic resistance throughout the kingdom bacteria is inevitably bringing humanity towards the “post-antibiotic” era. The emergence of so-called “superbugs”—pathogen strains that develop resistance to multiple conventional antibiotics—is urging researchers around the globe to work on the development or perfecting of alternative means of tackling the pathogenic bacteria infections. Although various conceptually different approaches are being considered, each comes with its advantages and drawbacks. While drug-resistant pathogens are undoubtedly represented by both Gram(+) and Gram(−) bacteria, possible target spectrum across the proposed alternative approaches of tackling them is variable. Numerous anti-virulence strategies aimed at reducing the pathogenicity of target bacteria rather than eliminating them are being considered among such alternative approaches. Sortase A (SrtA) is a membrane-associated cysteine protease that catalyzes a cell wall sorting reaction by which surface proteins, including virulence factors, are anchored to the bacterial cell wall of Gram(+) bacteria. Although SrtA inhibition seems perspective among the Gram-positive pathogen-targeted antivirulence strategies, it still remains less popular than other alternatives. A decrease in virulence due to inactivation of SrtA activity has been extensively studied in Staphylococcus aureus, but it has also been demonstrated in other Gram(+) species. In this manuscript, results of past studies on the discovery of novel SrtA inhibitory compounds and evaluation of their potency were summarized and commented on. Here, we discussed the rationale behind the inhibition of SrtA, raised some concerns on the comparability of the results from different studies, and touched upon the possible resistance mechanisms as a response to implementation of such therapy in practice. The goal of this article is to encourage further studies of SrtA inhibitory compounds.


2019 ◽  
Vol 116 (45) ◽  
pp. 22774-22782 ◽  
Author(s):  
Kirsty R. McWilliam ◽  
Alasdair Ivens ◽  
Liam J. Morrison ◽  
Monica R. Mugnier ◽  
Keith R. Matthews

African trypanosomes use an extreme form of antigenic variation to evade host immunity, involving the switching of expressed variant surface glycoproteins by a stochastic and parasite-intrinsic process. Parasite development in the mammalian host is another feature of the infection dynamic, with trypanosomes undergoing quorum sensing (QS)-dependent differentiation between proliferative slender forms and arrested, transmissible, stumpy forms. Longstanding experimental studies have suggested that the frequency of antigenic variation and transmissibility may be linked, antigen switching being higher in developmentally competent, fly-transmissible, parasites (“pleomorphs”) than in serially passaged “monomorphic” lines that cannot transmit through flies. Here, we have directly tested this tenet of the infection dynamic by using 2 experimental systems to reduce pleomorphism. Firstly, lines were generated that inducibly lose developmental capacity through RNAi-mediated silencing of the QS signaling machinery (“inducible monomorphs”). Secondly, de novo lines were derived that have lost the capacity for stumpy formation by serial passage (“selected monomorphs”) and analyzed for their antigenic variation in comparison to isogenic preselected populations. Analysis of both inducible and selected monomorphs has established that antigen switch frequency and developmental capacity are independently selected traits. This generates the potential for diverse infection dynamics in different parasite populations where the rate of antigenic switching and transmission competence are uncoupled. Further, this may support the evolution, maintenance, and spread of important trypanosome variants such as Trypanosoma brucei evansi that exploit mechanical transmission.


Sign in / Sign up

Export Citation Format

Share Document