scholarly journals Using Estimated On-Site Ambient Temperature Has Uncertain Benefit When Estimating Postmortem Interval

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Laurent Dourel ◽  
Thierry Pasquerault ◽  
Emmanuel Gaudry ◽  
Benoît Vincent

The forensic entomologist uses weather station data as part of the calculation when estimating the postmortem interval (PMI). To reduce the potential inaccuracies of this method caused by the distance between the crime scene and the meteorological station, temperature correlation data from the site of the corpse may be used. This experiment simulated the impact of retrospective weather data correction using linear regression between seven stations and sites in three climatic exposure groups during three different seasons as part of the accumulated degree days calculation for three necrophagous species (Diptera: Calliphoridae). No consistent benefit in the use of correlation or the original data from the meteorological stations was observed. In nine cases out of 12, the data from the weather station network limited the risk of a deviation from reality. The forensic entomologist should be cautious when using this correlation model.

2020 ◽  
Vol 12 (17) ◽  
pp. 6788 ◽  
Author(s):  
Eva Lucas Segarra ◽  
Germán Ramos Ruiz ◽  
Vicente Gutiérrez González ◽  
Antonis Peppas ◽  
Carlos Fernández Bandera

The use of building energy models (BEMs) is becoming increasingly widespread for assessing the suitability of energy strategies in building environments. The accuracy of the results depends not only on the fit of the energy model used, but also on the required external files, and the weather file is one of the most important. One of the sources for obtaining meteorological data for a certain period of time is through an on-site weather station; however, this is not always available due to the high costs and maintenance. This paper shows a methodology to analyze the impact on the simulation results when using an on-site weather station and the weather data calculated by a third-party provider with the purpose of studying if the data provided by the third-party can be used instead of the measured weather data. The methodology consists of three comparison analyses: weather data, energy demand, and indoor temperature. It is applied to four actual test sites located in three different locations. The energy study is analyzed at six different temporal resolutions in order to quantify how the variation in the energy demand increases as the time resolution decreases. The results showed differences up to 38% between annual and hourly time resolutions. Thanks to a sensitivity analysis, the influence of each weather parameter on the energy demand is studied, and which sensors are worth installing in an on-site weather station are determined. In these test sites, the wind speed and outdoor temperature were the most influential weather parameters.


2018 ◽  
Vol 24 (1) ◽  
pp. 35-42
Author(s):  
Young Sam Kim ◽  
Jong Hee Kim ◽  
Kwang Sang Yoon ◽  
Bong Soo Kweon ◽  
Young Sik Kim ◽  
...  

2013 ◽  
Vol 7 (4) ◽  
pp. 3717-3748 ◽  
Author(s):  
A. J. Wiltshire

Abstract. The Hindu-Kush, Karakoram Himalaya (HKKH) region has a negative average glacial mass balance despite anomalous possible gains in the Karakoram. However, changes in climate may influence the mass balance across the HKKH. We use high resolution climate modelling to analyse the implications of unmitigated climate change on precipitation, snowfall, air temperature and accumulated degree days for the Hindu Kush, Karakoram, Jammu-Kashmir, Himachal Pradesh and West Nepal regions, and East Nepal and Bhutan. In our analysis we focus on the climate drivers of change rather than the glaciological response. We find a complex regional response to climate change, with possible increases in snowfall over the western HKKH and decreases in the east. Accumulated degree days are less spatially variable than precipitation and show an increase in potential ablation in all regions. Overall, the eastern Himalayan glaciers are expected to be most sensitive to climate change due to the decreases in snowfall and increased ablation associated with warming. The eastern glaciers are therefore projected to decline over the 21st century despite increasing precipitation. The western glaciers are expected to decline at a slower rate over the 21st century as a response to unmitigated climate compared to the glaciers of the east. Importantly, the glacier response depends on important glaciological factors, such as the extent of debris cover, which may be of critical importance in moderating the response to climatic change. Decadal variability has a large effect highlighting the need for long-term observation records to fully understand the impact of climate on the glaciers of the HKKH cryosphere. Spatial variability in projected snowfall patterns are likely to be a key driver of glacier mass balance over the 21st century. Importantly, the regional trends in snowfall do not necessarily follow the trends in precipitation. A key change in the HKKH cryosphere is a switch from snowfall to rainfall in the eastern Himalaya. Although glacial mass balance is likely to be sensitive to climate change, as overall precipitation is projected to increase this may lead to an overall increase in water resources. In the west, projections suggest that glacial mass balance could respond less to climate change than those in the east. However, projection uncertainty covers a small increase to a decrease in precipitation for the western HKKH and Indus basin and as a result the water resources of the highly populated Indus region may be more vulnerable to unmitigated climate change.


1990 ◽  
Vol 115 (5) ◽  
pp. 861-869 ◽  
Author(s):  
Nita A. Davidson ◽  
L. Theodore Wilson ◽  
Michael P. Hoffmann ◽  
Frank G. Zalom

Temperatures recorded by weather stations and within the canopy of tomato (Lycopersicon esculentum Mill.) crops were compared in fields near Davis, Calif., during Summer 1983 (60 days) and 1987 (50 days). For both years, the average maximum and minimum temperatures, daily temperature ranges, degree days per day, and total accumulated degree days were compared. In 1983, the mean maximum temperature at the weather station did not differ significantly from that in the canopy, but the mean minimum temperature at the weather station was significantly lower than that in the canopy. In 1987, the mean maximum temperature at the weather station was significantly higher than that in the canopy, but mean minimum temperatures did not differ significantly. Temperature ranges were significantly narrower for the weather station toward the end of the 1983 season, and significantly wider for the weather station at midseason 1987. Comparisons of degree days per day showed significant differences between means at the weather station and in the canopy in 1983, and among those at the weather station and the two degree day calculation methods used for temperatures recorded in the canopy. Total accumulated degree days based on temperature records at the weather station were lower than those in the canopy in 1983 but higher in 1987. In 1987, the single sine degree day calculation method overestimated degree days compared to the 2-hr triangulation method. The phenology of the tomato crop as predicted by weather station temperatures indicated that tomato maturation was underestimated in 1983 and overestimated in 1987. The rate of development for hypothetical populations of Heliothis zea (Boddie) and Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) within the tomato crop was again underestimated in 1983 and overestimated in 1987, as based on temperature data of the weather station.


AGROFOR ◽  
2016 ◽  
Vol 1 (3) ◽  
Author(s):  
Claire SIMONIS ◽  
Bernard TYCHON ◽  
Françoise GELLENSMEULENBERGHS

Water balance calculation is essential for reliable agricultural management, and theactual evapotranspiration (ET) is the most complicated balance term to estimate. Inagriculture, the most common method used is based on Penman-Monteith referenceevaporation is determined from weather conditions for an unstressed grass cover,further multiplied by crop specific and soil water availability coefficients to obtainthe actual evapotranspiration. This approach is also used in the AquaCrop model.This model has proven to be accurate when all weather data are locally available.However, in many cases, weather data can’t be collected on the site due to thelimited number of stations and the vast region covered by each of them. Instead,data are often collected at many kilometers from the study site. The question wewant to study is: how does evapotranspiration accuracy evolves with respect toweather station distance? A winter wheat plot in Lonzée (Belgium) was studiedduring the 2014-2015 agricultural seasons. Actual evapotranspiration wassimulated with AquaCrop thanks to the weather data collected at 3 differentdistances from the study site: on the site (data collected by a fluxnet station), 20km, 50 km and 70km from the site. The non-on-site weather data were derivedfrom spatially interpolated 10 km grid data. These results were then compared tothe fluxnet station evapotranspiration measurements to assess the impact of theweather station distance. Substantial differences, which were found between thefour cases, evoking the importance of assimilating satellite derived ET products(e.g. MSG) into AquaCrop.


2005 ◽  
Vol 50 (3) ◽  
pp. 1-9 ◽  
Author(s):  
Mary S. Megyesi ◽  
Stephen P. Nawrocki ◽  
Neal H. Haskell

2013 ◽  
Vol 229 (1-3) ◽  
pp. 165.e1-165.e6 ◽  
Author(s):  
Jolandie Myburgh ◽  
Ericka N. L’Abbé ◽  
Maryna Steyn ◽  
Piet J. Becker

Sign in / Sign up

Export Citation Format

Share Document