scholarly journals Climate change implications for the glaciers of the Hindu-Kush, Karakoram and Himalayan region

2013 ◽  
Vol 7 (4) ◽  
pp. 3717-3748 ◽  
Author(s):  
A. J. Wiltshire

Abstract. The Hindu-Kush, Karakoram Himalaya (HKKH) region has a negative average glacial mass balance despite anomalous possible gains in the Karakoram. However, changes in climate may influence the mass balance across the HKKH. We use high resolution climate modelling to analyse the implications of unmitigated climate change on precipitation, snowfall, air temperature and accumulated degree days for the Hindu Kush, Karakoram, Jammu-Kashmir, Himachal Pradesh and West Nepal regions, and East Nepal and Bhutan. In our analysis we focus on the climate drivers of change rather than the glaciological response. We find a complex regional response to climate change, with possible increases in snowfall over the western HKKH and decreases in the east. Accumulated degree days are less spatially variable than precipitation and show an increase in potential ablation in all regions. Overall, the eastern Himalayan glaciers are expected to be most sensitive to climate change due to the decreases in snowfall and increased ablation associated with warming. The eastern glaciers are therefore projected to decline over the 21st century despite increasing precipitation. The western glaciers are expected to decline at a slower rate over the 21st century as a response to unmitigated climate compared to the glaciers of the east. Importantly, the glacier response depends on important glaciological factors, such as the extent of debris cover, which may be of critical importance in moderating the response to climatic change. Decadal variability has a large effect highlighting the need for long-term observation records to fully understand the impact of climate on the glaciers of the HKKH cryosphere. Spatial variability in projected snowfall patterns are likely to be a key driver of glacier mass balance over the 21st century. Importantly, the regional trends in snowfall do not necessarily follow the trends in precipitation. A key change in the HKKH cryosphere is a switch from snowfall to rainfall in the eastern Himalaya. Although glacial mass balance is likely to be sensitive to climate change, as overall precipitation is projected to increase this may lead to an overall increase in water resources. In the west, projections suggest that glacial mass balance could respond less to climate change than those in the east. However, projection uncertainty covers a small increase to a decrease in precipitation for the western HKKH and Indus basin and as a result the water resources of the highly populated Indus region may be more vulnerable to unmitigated climate change.

2014 ◽  
Vol 8 (3) ◽  
pp. 941-958 ◽  
Author(s):  
A. J. Wiltshire

Abstract. The Hindu Kush, Karakoram, and Himalaya (HKH) region has a negative average glacial mass balance for the present day despite anomalous possible gains in the Karakoram. However, changes in climate over the 21st century may influence the mass balance across the HKH. This study uses regional climate modelling to analyse the implications of unmitigated climate change on precipitation, snowfall, air temperature and accumulated positive degree days for the Hindu Kush (HK), Karakoram (KK), Jammu–Kashmir (JK), Himachal Pradesh and West Nepal regions (HP), and East Nepal and Bhutan (NB). The analysis focuses on the climate drivers of change rather than the glaciological response. Presented is a complex regional pattern of climate change, with a possible increase in snowfall over the western HKH and decreases in the east. Accumulated degree days are less spatially variable than precipitation and show an increase in potential ablation in all regions combined with increases in the length of the seasonal melt period. From the projected change in regional climate the possible implications for future glacier mass balance are inferred. Overall, within the modelling framework used here the eastern Himalayan glaciers (Nepal–Bhutan) are the most vulnerable to climate change due to the decreased snowfall and increased ablation associated with warming. The eastern glaciers are therefore projected to decline over the 21st Century despite increasing precipitation. The western glaciers (Hindu Kush, Karakoram) are expected to decline at a slower rate over the 21st century in response to unmitigated climate compared to the glaciers of the east. Importantly, regional climate change is highly uncertain, especially in important cryospheric drivers such as snowfall timing and amounts, which are poorly constrained by observations. Data are available from the author on request.


2014 ◽  
Vol 55 (66) ◽  
pp. 9-14 ◽  
Author(s):  
Prashant Baral ◽  
Rijan B. Kayastha ◽  
Walter W. Immerzeel ◽  
Niraj S. Pradhananga ◽  
Bikas C. Bhattarai ◽  
...  

AbstractMonitoring the glacier mass balance of summer-accumulation-type Himalayan glaciers is critical to not only assess the impact of climate change on the volume of such glaciers but also predict the downstream water availability and the global sea-level change in future. To better understand the change in meteorological parameters related to glacier mass balance and runoff in a glacierized basin and to assess the highly heterogeneous glacier responses to climate change in the Nepal Himalaya and nearby ranges, the Cryosphere Monitoring Project (CMP) carries out meteorological observations in Langtang Valley and mass-balance measurements on Yala Glacier, a debris-free glacier in the same valley. A negative annual mass balance of –0.89m w.e. and the rising equilibrium-line altitude of Yala Glacier indicate a continuation of a secular trend toward more negative mass balances. Lower temperature lapse rate during the monsoon, the effect of convective precipitation associated with mesoscale thermal circulation in the local precipitation and the occurrence of distinct diurnal cycles of temperature and precipitation at different stations in the valley are other conclusions of this comprehensive scientific study initiated by CMP which aims to yield multi-year glaciological, hydrological and meteorological observations in the glacierized Langtang River basin.


2021 ◽  
Author(s):  
Dan Goldberg ◽  
Louis Kinnear ◽  
Florian Kobierska-Baffie ◽  
Nans Addor ◽  
Helen He ◽  
...  

<p>Hundreds of millions of people depend strongly on hydrological inputs in the mountainous regions of China and central Asia. Glacier runoff is a major contributor to this hydrological forcing, yet many glaciers in the region have undergone mass loss in recent years and this mass loss is expected to continue or increase in response to climatological change. As such it is important to assess the large-scale response of High Mountain Asia glaciers to climate change , and its effects on hydrology. We present here preliminary modelling investigations of glacier change and hydrological impacts in response to high-resolution climate model projections over the 21st century as a component of the project SWARM (Impacts Assessment to Support WAter Resources Management and Climate Change Adaptation for China). Our model chain consists of i) Open Global Glacier Model (OGGM), which allows for high-resolution glacier flowline modelling of multiple glaciers, and ii) the Framework for Understanding Structural Errors (FUSE) a modular framework for snow and hydrology modelling, which we used to assemble and run three hydrological models over the whole of China. Both FUSE and OGGM are forced by an ensemble of bias-corrected CORDEX-East Asia regional climate models (in turn forced by CMIP5 general circulation models), and outputs of OGGM are provided to FUSE. We discuss our application of OGGM to 80,000 glaciers in Chinese river catchments; our efforts to calibrate the mass balance model using an expanded set of geodetic mass balance constraints; and finally the projections of glacier, snow and streamflow changes in the 21st century. In particular, we discuss the robustness and uncertainties in the projections as sampled by our multi-model ensemble.</p>


2005 ◽  
Vol 42 ◽  
pp. 277-283 ◽  
Author(s):  
Andrew Wright ◽  
Jemma Wadham ◽  
Martin Siegert ◽  
Adrian Luckman ◽  
Jack Kohler

AbstractA surface-energy/mass-balance model with an explicit calculation of meltwater refreezing and superimposed ice formation is applied to midre Lovénbreen, Spitsbergen, Svalbard. The model is run with meteorological measurements to represent the present climate, and run with scenarios taken from global climate model predictions based on the IS92a emissions scenario to represent future climates. Model results indicate that superimposed ice accounts for on average 37% of the total net accumulation under present conditions. The model is found to be highly sensitive to changes in the mean annual air temperature and much less sensitive to changes in the total annual precipitation. A 0.5˚C decade–1 temperature increase is predicted to cause an average mass-balance change of –0.43 ma–1, while a 2% decade–1 increase in precipitation will result in only a +0.02 ma–1 change in mass balance. An increase in temperature results in a significant decrease in the size of the accumulation area at midre Lovénbreen and hence a similar decrease in the net volume of superimposed ice. The model predicts, however, that the relative importance of superimposed ice will increase to account for >50% of the total accumulation by 2050. The results show that the refreezing of meltwater and in particular the formation of superimposed ice make an important positive contribution to the mass balance of midre Lovénbreen under present conditions and will play a vital future role in slowing down the response of glacier mass balance to climate change.


2020 ◽  
Vol 12 (18) ◽  
pp. 7585
Author(s):  
Dimitri Defrance ◽  
Benjamin Sultan ◽  
Mathieu Castets ◽  
Adjoua Moise Famien ◽  
Christian Baron

Food security is a crucial issue in the Sahel and could be endangered by climate change and demographic pressure during the 21st century. Higher temperatures and changes in rainfall induced by global warming are threatening rainfed agriculture in this region while the population is expected to increase approximately three-fold until 2050. Our study quantifies the impact of climate change on food security by combining climate modelling (16 models from CMIP5), crop yield (simulated by agronomic model, SARRA-O) and demographic evolution (provided by UN projection) under two future climatic scenarios. We simulate yield for the main crops in five countries in West Africa and estimate the population pressure on crop production to assess the number of available cereal production per capita. We found that, although uncertain, the African monsoon evolution leads to an increase of rainfall in Eastern Sahel and a decrease in Western Sahel under the RCP8.5 (Representative Concentration Pathway) scenario from IPCC, leading to the higher temperature increase by the end of the 21st century. With regard to the abundance of food for the inhabitants, all the scenarios in each country show that in 2050, local agricultural production will be below 50 kg per capita. This situation can have impact on crop import and regional migration.


2010 ◽  
Vol 7 (2) ◽  
pp. 1883-1912 ◽  
Author(s):  
D. R. Archer ◽  
N. Forsythe ◽  
H. J. Fowler ◽  
S. M. Shah

Abstract. Pakistan is highly dependent on water resources originating in the mountain sources of the upper Indus for irrigated agriculture which is the mainstay of its economy. Hence any change in available resources through climate change or socio-economic factors could have a serious impact on food security and the environment. In terms of both ratio of withdrawals to runoff and per-capita water availability, Pakistan's water resources are already highly stressed and will become increasingly so with projected population changes. Potential changes to supply through declining reservoir storage, the impact of waterlogging and salinity or over-abstraction of groundwater, or reallocations for environmental remediation of the Indus Delta or to meet domestic demands, will reduce water availability for irrigation. The impact of climate change on resources in the Upper Indus is considered in terms of three hydrological regimes – a nival regime dependent on melting of winter snow, a glacial regime, and a rainfall regime dependent on concurrent rainfall. On the basis of historic trends in climate, most notably the decline in summer temperatures, there is no strong evidence in favour of marked reductions in water resources from any of the three regimes. Evidence for changes in trans-Himalayan glacier mass balance is mixed. Sustainability of water resources appears more threatened by socio-economic changes than by climatic trends. Nevertheless, analysis and the understanding of the linkage of climate, glaciology and runoff is still far from complete; recent past climate experience may not provide a reliable guide to the future.


2010 ◽  
Vol 14 (8) ◽  
pp. 1669-1680 ◽  
Author(s):  
D. R. Archer ◽  
N. Forsythe ◽  
H. J. Fowler ◽  
S. M. Shah

Abstract. Pakistan is highly dependent on water resources originating in the mountain sources of the upper Indus for irrigated agriculture which is the mainstay of its economy. Hence any change in available resources through climate change or socio-economic factors could have a serious impact on food security and the environment. In terms of both ratio of withdrawals to runoff and per-capita water availability, Pakistan's water resources are already highly stressed and will become increasingly so with projected population changes. Potential changes to supply through declining reservoir storage, the impact of waterlogging and salinity or over-abstraction of groundwater, or reallocations for environmental remediation of the Indus Delta or to meet domestic demands, will reduce water availability for irrigation. The impact of climate change on resources in the Upper Indus is considered in terms of three hydrological regimes – a nival regime dependent on melting of winter snow, a glacial regime, and a rainfall regime dependent on concurrent rainfall. On the basis of historic trends in climate, most notably the decline in summer temperatures, there is no strong evidence in favour of marked reductions in water resources from any of the three regimes. Evidence for changes in trans-Himalayan glacier mass balance is mixed. Sustainability of water resources appears more threatened by socio-economic changes than by climatic trends. Nevertheless, analysis and the understanding of the linkage of climate, glaciology and runoff is still far from complete; recent past climate experience may not provide a reliable guide to the future.


2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


Sign in / Sign up

Export Citation Format

Share Document