scholarly journals Elliptically Bent X-Ray Mirrors with Active Temperature Stabilization

2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Sheng Yuan ◽  
Matthew Church ◽  
Valeriy V. Yashchuk ◽  
Kenneth A. Goldberg ◽  
Richard S. Celestre ◽  
...  

We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the advanced light source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3 K does not noticeably affect the mirror figure. Without temperature stabilization, the rms slope error is changed by approximately 1.5 μrad (primarily defocus) under the same conditions.

2005 ◽  
Vol 76 (5) ◽  
pp. 053103
Author(s):  
L. Gavinho ◽  
C. Cusatis ◽  
I. Mazzaro ◽  
G. Tirao

Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 199
Author(s):  
Yu-Cheng Lin ◽  
Liang-Yü Chen

The generation of lossy mode resonances (LMR) with a metallic oxide film deposited on an optical fiber has attracted the attention of many applications. However, an LMR-based optical fiber sensor is frangible, and therefore it does not allow control of the temperature and is not suited to mass production. This paper aims to develop a temperature-controlled lossy mode resonance (TC-LMR) sensor on an optical planar waveguide with an active temperature control function in which an ITO film is not only used as the LMR resonance but also to provide the heating function to achieve the benefits of compact size and active temperature control. A simple flat model about the heat transfer mechanism is proposed to determine the heating time constant for the applied voltages. The TC-LMR sensor is evaluated experimentally for refractive index measurement using a glycerol solution. The heating temperature functions relative to the controlled voltages for water and glycerol are obtained to verify the performance of the TC-LMR sensor. The TC-LMR sensor is a valuable sensing device that can be used in clinical testing and point of care for programming heating with precise temperature control.


2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Yuri Shvyd'ko ◽  
Sergey Terentyev ◽  
Vladimir Blank ◽  
Tomasz Kolodziej

Next-generation high-brilliance X-ray photon sources call for new X-ray optics. Here we demonstrate the possibility of using monolithic diamond channel-cut crystals as high-heat-load beam-multiplexing narrow-band mechanically stable X-ray monochromators with high-power X-ray beams at cutting-edge high-repetition-rate X-ray free-electron laser (XFEL) facilities. The diamond channel-cut crystals fabricated and characterized in these studies are designed as two-bounce Bragg reflection monochromators directing 14.4 or 12.4 keV X-rays within a 15 meV bandwidth to 57Fe or 45Sc nuclear resonant scattering experiments, respectively. The crystal design allows out-of-band X-rays transmitted with minimal losses to alternative simultaneous experiments. Only ≲2% of the incident ∼100 W X-ray beam is absorbed in the 50 µm-thick first diamond crystal reflector, ensuring that the monochromator crystal is highly stable. Other X-ray optics applications of diamond channel-cut crystals are anticipated.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5552
Author(s):  
Ryota Kudo ◽  
Masahiro Sonobe ◽  
Yoshiaki Chino ◽  
Yu Kitazawa ◽  
Mutsumi Kimura

The synthesis and characterization of two phthalocyanine (Pc) structural isomers, 1 and 2, in which four 2,6-di(hexyloxy)phenyl units were attached directly to the 1,8,15,22- or 1,4,15,18-positions of the Pc rings, are described. Both Pcs 1 and 2 exhibited low melting points, i.e., 120 and 130 °C respectively, due to the reduction in intermolecular π-π interaction among the Pc rings caused by the steric hindrance of 2,6-dihexyloxybenzene units. The thermal behaviors were investigated with temperature-controlled polarizing optical microscopy, differential scanning calorimetry, powder X-ray diffraction, and absorption spectral analyses. Pc 1, having C4h molecular symmetry, organized into a lamellar structure containing lateral assemblies of Pc rings. In contrast, the other Pc 2 revealed the formation of metastable crystalline phases, including disordered stacks of Pcs due to rapid cooling from a melted liquid.


Author(s):  
Joshua B. Drake ◽  
Lie Tang ◽  
Theodore J. Heindel

Fluidized beds are commonly found in the chemical and energy processing industries because of their low pressure drop, uniform temperature distribution, and high heat transfer rates. For example, in biomass gasification, biomass particles are injected into a heated bubbling bed of inert material (typically refractory sand) that volatilizes to form a flammable gas. However, the movement of the biomass particle through the bubbling bed is difficult to quantify because the systems are opaque. This paper describes X-ray particle tracking velocimetry (XPTV) applied to fluidized beds, where X-ray flow visualization is used to track the location of a single fabricated tracer particle as a function of time in a fluidized bed to study the bed/particle hydrodynamics. Using stereoscopic X-ray imaging, the 3D position of the tracer particle as a function of time is determined, from which tracer particle velocity can be calculated. Details and challenges of the XPTV process are also summarized.


Sign in / Sign up

Export Citation Format

Share Document