scholarly journals Linking ER Stress to Autophagy: Potential Implications for Cancer Therapy

2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Tom Verfaillie ◽  
Maria Salazar ◽  
Guillermo Velasco ◽  
Patrizia Agostinis

Different physiological and pathological conditions can perturb protein folding in the endoplasmic reticulum, leading to a condition known as ER stress. ER stress activates a complex intracellular signal transduction pathway, called unfolded protein response (UPR). The UPR is tailored essentially to reestablish ER homeostasis also through adaptive mechanisms involving the stimulation of autophagy. However, when persistent, ER stress can switch the cytoprotective functions of UPR and autophagy into cell death promoting mechanisms. Recently, a variety of anticancer therapies have been linked to the induction of ER stress in cancer cells, suggesting that strategies devised to stimulate its prodeath function or block its prosurvival function, could be envisaged to improve their tumoricidial action. A better understanding of the molecular mechanisms that determine the final outcome of UPR and autophagy activation by chemotherapeutic agents, will offer new opportunities to improve existing cancer therapies as well as unravel novel targets for cancer treatment.

2014 ◽  
Vol 34 (4) ◽  
Author(s):  
Haoxi Wu ◽  
Benjamin S. H. Ng ◽  
Guillaume Thibault

Stress pathways monitor intracellular systems and deploy a range of regulatory mechanisms in response to stress. One of the best-characterized pathways, the UPR (unfolded protein response), is an intracellular signal transduction pathway that monitors ER (endoplasmic reticulum) homoeostasis. Its activation is required to alleviate the effects of ER stress and is highly conserved from yeast to human. Although metazoans have three UPR outputs, yeast cells rely exclusively on the Ire1 (inositol-requiring enzyme-1) pathway, which is conserved in all Eukaryotes. In general, the UPR program activates hundreds of genes to alleviate ER stress but it can lead to apoptosis if the system fails to restore homoeostasis. In this review, we summarize the major advances in understanding the response to ER stress in Sc (Saccharomyces cerevisiae), Sp (Schizosaccharomyces pombe) and humans. The contribution of solved protein structures to a better understanding of the UPR pathway is discussed. Finally, we cover the interplay of ER stress in the development of diseases.


Author(s):  
Amir Ajoolabady ◽  
Shuyi Wang ◽  
Guido Kroemer ◽  
Daniel J Klionsky ◽  
Vladimir N Uversky ◽  
...  

Abstract The endoplasmic reticulum (ER) hosts linear polypeptides and fosters natural folding of proteins through ER-residing chaperones and enzymes. Failure of the ER to align and compose proper protein architecture leads to accumulation of misfolded/unfolded proteins in the ER lumen, which disturbs ER homeostasis to provoke ER stress. Presence of ER stress initiates the cytoprotective unfolded protein response (UPR) to restore ER homeostasis or instigates a rather maladaptive UPR to promote cell death. Although a wide array of cellular processes such as persistent autophagy, dysregulated mitophagy, and secretion of proinflammatory cytokines may contribute to the onset and progression of cardiometabolic diseases, it is well perceived that ER stress also evokes the onset and development of cardiometabolic diseases, particularly cardiovascular diseases (CVDs), diabetes mellitus, obesity, and chronic kidney disease (CKD). Meanwhile, these pathological conditions further aggravate ER stress, creating a rather vicious cycle. Here in this review, we aimed at summarizing and updating the available information on ER stress in CVDs, diabetes mellitus, obesity, and CKD, hoping to offer novel insights for the management of these cardiometabolic comorbidities through regulation of ER stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aslı Okan ◽  
Necdet Demir ◽  
Berna Sozen

AbstractDiabetes mellitus (DM) has profound effects on the female mammalian reproductive system, and early embryonic development, reducing female reproductive outcomes and inducing developmental programming in utero. However, the underlying cellular and molecular mechanisms remain poorly defined. Accumulating evidence implicates endoplasmic reticulum (ER)-stress with maternal DM associated pathophysiology. Yet the direct pathologies and causal events leading to ovarian dysfunction and altered early embryonic development have not been determined. Here, using an in vivo mouse model of Type 1 DM and in vitro hyperglycaemia-exposure, we demonstrate the activation of ER-stress within adult ovarian tissue and pre-implantation embryos. In diabetic ovaries, we show that the unfolded protein response (UPR) triggers an apoptotic cascade by the co-activation of Caspase 12 and Cleaved Caspase 3 transducers. Whereas DM-exposed early embryos display differential ER-associated responses; by activating Chop in within embryonic precursors and Caspase 12 within placental precursors. Our results offer new insights for understanding the pathological effects of DM on mammalian ovarian function and early embryo development, providing new evidence of its mechanistic link with ER-stress in mice.


2014 ◽  
Vol 5 (12) ◽  
pp. e1555-e1555 ◽  
Author(s):  
Y Estornes ◽  
M A Aguileta ◽  
C Dubuisson ◽  
J De Keyser ◽  
V Goossens ◽  
...  

Abstract Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER stress and results in the activation of the unfolded protein response (UPR), which aims at restoring ER homeostasis. However, when the stress is too severe the UPR switches from being a pro-survival response to a pro-death one, and the molecular mechanisms underlying ER stress-mediated death have remained incompletely understood. In this study, we identified receptor interacting protein kinase 1 (RIPK1)—a kinase at the crossroad between life and death downstream of various receptors—as a new regulator of ER stress-induced death. We found that Ripk1-deficient MEFs are protected from apoptosis induced by ER stressors, which is reflected by reduced caspase activation and PARP processing. Interestingly, the pro-apoptotic role of Ripk1 is independent of its kinase activity, is not regulated by its cIAP1/2-mediated ubiquitylation, and does not rely on the direct regulation of JNK or CHOP, two reportedly main players in ER stress-induced death. Instead, we found that ER stress-induced apoptosis in these cells relies on death receptor-independent activation of caspase-8, and identified Ripk1 upstream of caspase-8. However, in contrast to RIPK1-dependent apoptosis downstream of TNFR1, we did not find Ripk1 associated with caspase-8 in a death-inducing complex upon unresolved ER stress. Our data rather suggest that RIPK1 indirectly regulates caspase-8 activation, in part via interaction with the ER stress sensor inositol-requiring protein 1 (IRE1).


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Anna Walczak ◽  
Kinga Gradzik ◽  
Jacek Kabzinski ◽  
Karolina Przybylowska-Sygut ◽  
Ireneusz Majsterek

Cancer is the second most frequent cause of death worldwide. It is considered to be one of the most dangerous diseases, and there is still no effective treatment for many types of cancer. Since cancerous cells have a high proliferation rate, it is pivotal for their proper functioning to have the well-functioning protein machinery. Correct protein processing and folding are crucial to maintain tumor homeostasis. Endoplasmic reticulum (ER) stress is one of the leading factors that cause disturbances in these processes. It is induced by impaired function of the ER and accumulation of unfolded proteins. Induction of ER stress affects many molecular pathways that cause the unfolded protein response (UPR). This is the way in which cells can adapt to the new conditions, but when ER stress cannot be resolved, the UPR induces cell death. The molecular mechanisms of this double-edged sword process are involved in the transition of the UPR either in a cell protection mechanism or in apoptosis. However, this process remains poorly understood but seems to be crucial in the treatment of many diseases that are related to ER stress. Hence, understanding the ER stress response, especially in the aspect of pathological consequences of UPR, has the potential to allow us to develop novel therapies and new diagnostic and prognostic markers for cancer.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Rafael Rangel-Aldao

AbstractNon-communicable diseases (NCDs) such as cardiovascular disease, cancers, diabetes and obesity are responsible for about two thirds of mortality worldwide, and all of these ailments share a common low-intensity systemic chronic inflammation, endoplasmic reticulum stress (ER stress), and the ensuing Unfolded Protein Response (UPR). These adaptive mechanisms are also responsible for significant metabolic changes that feedback with the central clock of the suprachiasmatic nucleus (SCN) of the hypothalamus, as well as with oscillators of peripheral tissues. In this review we attempt to use a systems biology approach to explore such interactions as a whole; to answer two fundamental questions: (1) how dependent are these adaptive responses and subsequent events leading to NCD with their state of synchrony with the SCN and peripheral oscillators? And, (2) How could modifiers of the activity of SCN for instance, food intake, exercise, and drugs, be potentially used to modulate systemic inflammation and ER stress to ameliorate or even prevent NCDs?


2017 ◽  
Vol 216 (8) ◽  
pp. 2295-2304 ◽  
Author(s):  
Norfadilah Hamdan ◽  
Paraskevi Kritsiligkou ◽  
Chris M. Grant

Disturbances in endoplasmic reticulum (ER) homeostasis create a condition termed ER stress. This activates the unfolded protein response (UPR), which alters the expression of many genes involved in ER quality control. We show here that ER stress causes the aggregation of proteins, most of which are not ER or secretory pathway proteins. Proteomic analysis of the aggregated proteins revealed enrichment for intrinsically aggregation-prone proteins rather than proteins which are affected in a stress-specific manner. Aggregation does not arise because of overwhelming proteasome-mediated degradation but because of a general disruption of cellular protein homeostasis. We further show that overexpression of certain chaperones abrogates protein aggregation and protects a UPR mutant against ER stress conditions. The onset of ER stress is known to correlate with various disease processes, and our data indicate that widespread amorphous and amyloid protein aggregation is an unanticipated outcome of such stress.


2017 ◽  
Vol 29 (1) ◽  
pp. 142
Author(s):  
K. Gutierrez ◽  
W. G. Glanzner ◽  
N. Dicks ◽  
R. C. Bohrer ◽  
L. G. Currin ◽  
...  

Early developing embryos are very sensitive to their developmental milieu. For instance, variations in temperature, pH, or culture media composition can trigger endoplasmic reticulum (ER) stress. Endoplasmic reticulum stress has been shown to reduce early embryo development and embryo quality. In response to ER stress, embryos activate coping mechanisms, such as the unfolded protein response, to re-establish ER homeostasis. The X box binding protein (XBP1) is one of the main transducers of the unfolded protein response. Under ER stress, XBP1 mRNA is unconventionally spliced by IRE1α to yield its activated isoform (XBP1s), which allows expression of genes involved in protein folding, transport, and degradation. XBP1s has been detected in oocytes and early stage embryos of different species, including Drosophila, Xenopus, zebrafish, mice, and pigs, suggesting an important role during early embryo development. In this study, we used the CRISPR/Cas9 gene editing technology to investigate the effect of XBP1 dysregulation during development of porcine embryos in vitro. Pig zygotes were produced by intracytoplasmic sperm injection using in vitro-matured oocytes. Treatments consisted of (a) Cas9 mRNA (Cas9) + 1 single guide RNAs targeting XBP1 gene region 1 (sgRNA-1); (b) Cas9 + 1 single guide RNAs targeting XBP1 gene region 2 (sgRNA-2); (c) Cas9 + sgRNA-1 + sgRNA-2; (d) Cas9 alone; and (e) sgRNA-1 + sgRNA-2. After injection, embryos were cultured in vitro for 5 to 7 days to assess development and cell numbers. Experiments were repeated 5 or more times, and data were analysed by ANOVA and means compared using Student’s t-test or Tukey–Kramer Honestly Significant Difference test. Embryo cleavage was similar between the groups (a = 59.8 ± 4.9%, b = 58.8 ± 5.3%, c = 68.86 ± 2.2%, d = 66.4 ± 5.9%, and e = 70.10 ± 1.9%), but development to the blastocyst stage was substantially reduced (P < 0.05) in the groups injected with Cas9 + sgRNAs (a = 18 ± 4.5%, b = 16 ± 1.5%, and c = 5.3 ± 2.8%) compared with controls (d = 33.7 ± 6.2% and e = 31.4 ± 1.2%). Moreover, we observed that only 22.7% of the embryos treated with Cas9 + sgRNA-1 + sgRNA-2 were able to develop beyond 8-cell stage compared with 62.5% in the control group injected with Cas9 alone. These findings suggest that XBP1 activity is required for maintenance of ER homeostasis and development of porcine embryos beyond the main period of embryo genome activation.


Endocrinology ◽  
2015 ◽  
Vol 156 (6) ◽  
pp. 2349-2364 ◽  
Author(s):  
H. P. Gaide Chevronnay ◽  
V. Janssens ◽  
P. Van Der Smissen ◽  
X. H. Liao ◽  
Y. Abid ◽  
...  

Abstract Thyroid hormones are released from thyroglobulin (Tg) in lysosomes, which are impaired in infantile/nephropathic cystinosis. Cystinosis is a lysosomal cystine storage disease due to defective cystine exporter, cystinosin. Cystinotic children develop subclinical and then overt hypothyroidism. Why hypothyroidism is the most frequent and earliest endocrine complication of cystinosis is unknown. We here defined early alterations in Ctns−/− mice thyroid and identified subcellular and molecular mechanisms. At 9 months, T4 and T3 plasma levels were normal and TSH was moderately increased (∼4-fold). By histology, hyperplasia and hypertrophy of most follicles preceded colloid exhaustion. Increased immunolabeling for thyrocyte proliferation and apoptotic shedding indicated accelerated cell turnover. Electron microscopy revealed endoplasmic reticulum (ER) dilation, apical lamellipodia indicating macropinocytic colloid uptake, and lysosomal cystine crystals. Tg accumulation in dilated ER contrasted with mRNA down-regulation. Increased expression of ER chaperones, glucose-regulated protein of 78 kDa and protein disulfide isomerase, associated with alternative X-box binding protein-1 splicing, revealed unfolded protein response (UPR) activation by ER stress. Decreased Tg mRNA and ER stress suggested reduced Tg synthesis. Coordinated increase of UPR markers, activating transcription factor-4 and C/EBP homologous protein, linked ER stress to apoptosis. Hormonogenic cathepsins were not altered, but lysosome-associated membrane protein-1 immunolabeling disclosed enlarged vesicles containing iodo-Tg and impaired lysosomal fusion. Isopycnic fractionation showed iodo-Tg accumulation in denser lysosomes, suggesting defective lysosomal processing and hormone release. In conclusion, Ctns−/− mice showed the following alterations: 1) compensated primary hypothyroidism and accelerated thyrocyte turnover; 2) impaired Tg production linked to ER stress/UPR response; and 3) altered endolysosomal trafficking and iodo-Tg processing. The Ctns−/− thyroid is useful to study disease progression and evaluate novel therapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Emily M. Nakada ◽  
Rui Sun ◽  
Utako Fujii ◽  
James G. Martin

The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and induces the unfolded protein response (UPR) and other mechanisms to restore ER homeostasis, including translational shutdown, increased targeting of mRNAs for degradation by the IRE1-dependent decay pathway, selective translation of proteins that contribute to the protein folding capacity of the ER, and activation of the ER-associated degradation machinery. When ER stress is excessive or prolonged and these mechanisms fail to restore proteostasis, the UPR triggers the cell to undergo apoptosis. This review also examines the overlooked role of post-translational modifications and their roles in protein processing and effects on ER stress and the UPR. Finally, these effects are examined in the context of lung structure, function, and disease.


Sign in / Sign up

Export Citation Format

Share Document