scholarly journals A Mouse Model Suggests Two Mechanisms for Thyroid Alterations in Infantile Cystinosis: Decreased Thyroglobulin Synthesis Due to Endoplasmic Reticulum Stress/Unfolded Protein Response and Impaired Lysosomal Processing

Endocrinology ◽  
2015 ◽  
Vol 156 (6) ◽  
pp. 2349-2364 ◽  
Author(s):  
H. P. Gaide Chevronnay ◽  
V. Janssens ◽  
P. Van Der Smissen ◽  
X. H. Liao ◽  
Y. Abid ◽  
...  

Abstract Thyroid hormones are released from thyroglobulin (Tg) in lysosomes, which are impaired in infantile/nephropathic cystinosis. Cystinosis is a lysosomal cystine storage disease due to defective cystine exporter, cystinosin. Cystinotic children develop subclinical and then overt hypothyroidism. Why hypothyroidism is the most frequent and earliest endocrine complication of cystinosis is unknown. We here defined early alterations in Ctns−/− mice thyroid and identified subcellular and molecular mechanisms. At 9 months, T4 and T3 plasma levels were normal and TSH was moderately increased (∼4-fold). By histology, hyperplasia and hypertrophy of most follicles preceded colloid exhaustion. Increased immunolabeling for thyrocyte proliferation and apoptotic shedding indicated accelerated cell turnover. Electron microscopy revealed endoplasmic reticulum (ER) dilation, apical lamellipodia indicating macropinocytic colloid uptake, and lysosomal cystine crystals. Tg accumulation in dilated ER contrasted with mRNA down-regulation. Increased expression of ER chaperones, glucose-regulated protein of 78 kDa and protein disulfide isomerase, associated with alternative X-box binding protein-1 splicing, revealed unfolded protein response (UPR) activation by ER stress. Decreased Tg mRNA and ER stress suggested reduced Tg synthesis. Coordinated increase of UPR markers, activating transcription factor-4 and C/EBP homologous protein, linked ER stress to apoptosis. Hormonogenic cathepsins were not altered, but lysosome-associated membrane protein-1 immunolabeling disclosed enlarged vesicles containing iodo-Tg and impaired lysosomal fusion. Isopycnic fractionation showed iodo-Tg accumulation in denser lysosomes, suggesting defective lysosomal processing and hormone release. In conclusion, Ctns−/− mice showed the following alterations: 1) compensated primary hypothyroidism and accelerated thyrocyte turnover; 2) impaired Tg production linked to ER stress/UPR response; and 3) altered endolysosomal trafficking and iodo-Tg processing. The Ctns−/− thyroid is useful to study disease progression and evaluate novel therapies.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aslı Okan ◽  
Necdet Demir ◽  
Berna Sozen

AbstractDiabetes mellitus (DM) has profound effects on the female mammalian reproductive system, and early embryonic development, reducing female reproductive outcomes and inducing developmental programming in utero. However, the underlying cellular and molecular mechanisms remain poorly defined. Accumulating evidence implicates endoplasmic reticulum (ER)-stress with maternal DM associated pathophysiology. Yet the direct pathologies and causal events leading to ovarian dysfunction and altered early embryonic development have not been determined. Here, using an in vivo mouse model of Type 1 DM and in vitro hyperglycaemia-exposure, we demonstrate the activation of ER-stress within adult ovarian tissue and pre-implantation embryos. In diabetic ovaries, we show that the unfolded protein response (UPR) triggers an apoptotic cascade by the co-activation of Caspase 12 and Cleaved Caspase 3 transducers. Whereas DM-exposed early embryos display differential ER-associated responses; by activating Chop in within embryonic precursors and Caspase 12 within placental precursors. Our results offer new insights for understanding the pathological effects of DM on mammalian ovarian function and early embryo development, providing new evidence of its mechanistic link with ER-stress in mice.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1793 ◽  
Author(s):  
Nam ◽  
Jeon

The endoplasmic reticulum (ER) is an interconnected organelle that is responsible for the biosynthesis, folding, maturation, stabilization, and trafficking of transmembrane and secretory proteins. Therefore, cells evolve protein quality-control equipment of the ER to ensure protein homeostasis, also termed proteostasis. However, disruption in the folding capacity of the ER caused by a large variety of pathophysiological insults leads to the accumulation of unfolded or misfolded proteins in this organelle, known as ER stress. Upon ER stress, unfolded protein response (UPR) of the ER is activated, integrates ER stress signals, and transduces the integrated signals to relive ER stress, thereby leading to the re-establishment of proteostasis. Intriguingly, severe and persistent ER stress and the subsequently sustained unfolded protein response (UPR) are closely associated with tumor development, angiogenesis, aggressiveness, immunosuppression, and therapeutic response of cancer. Additionally, the UPR interconnects various processes in and around the tumor microenvironment. Therefore, it has begun to be delineated that pharmacologically and genetically manipulating strategies directed to target the UPR of the ER might exhibit positive clinical outcome in cancer. In the present review, we summarize recent advances in our understanding of the UPR of the ER and the UPR of the ER–mitochondria interconnection. We also highlight new insights into how the UPR of the ER in response to pathophysiological perturbations is implicated in the pathogenesis of cancer. We provide the concept to target the UPR of the ER, eventually discussing the potential of therapeutic interventions for targeting the UPR of the ER for cancer treatment.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Chelsea E. Stamm ◽  
Breanna L. Pasko ◽  
Sujittra Chaisavaneeyakorn ◽  
Luis H. Franco ◽  
Vidhya R. Nair ◽  
...  

ABSTRACTMycobacterium tuberculosis(Mtb), the causative agent of tuberculosis, is one of the most successful human pathogens. One reason for its success is that Mtb can reside within host macrophages, a cell type that normally functions to phagocytose and destroy infectious bacteria. However, Mtb is able to evade macrophage defenses in order to survive for prolonged periods of time. Many intracellular pathogens secrete virulence factors targeting host membranes and organelles to remodel their intracellular environmental niche. We hypothesized that Mtb secreted proteins that target host membranes are vital for Mtb to adapt to and manipulate the host environment for survival. Thus, we characterized 200 secreted proteins from Mtb for their ability to associate with eukaryotic membranes using a unique temperature-sensitive yeast screen and to manipulate host trafficking pathways using a modified inducible secretion screen. We identified five Mtb secreted proteins that both associated with eukaryotic membranes and altered the host secretory pathway. One of these secreted proteins, Mpt64, localized to the endoplasmic reticulum during Mtb infection of murine and human macrophages and impaired the unfolded protein response in macrophages. These data highlight the importance of secreted proteins in Mtb pathogenesis and provide a basis for further investigation into their molecular mechanisms.IMPORTANCEAdvances have been made to identify secreted proteins ofMycobacterium tuberculosisduring animal infections. These data, combined with transposon screens identifying genes important forM. tuberculosisvirulence, have generated a vast resource of potentialM. tuberculosisvirulence proteins. However, the function of many of these proteins inM. tuberculosispathogenesis remains elusive. We have integrated three cell biological screens to characterize nearly 200M. tuberculosissecreted proteins for eukaryotic membrane binding, host subcellular localization, and interactions with host vesicular trafficking. In addition, we observed the localization of one secreted protein, Mpt64, to the endoplasmic reticulum (ER) duringM. tuberculosisinfection of macrophages. Interestingly, although Mpt64 is exported by the Sec pathway, its delivery into host cells was dependent upon the action of the type VII secretion system. Finally, we observed that Mpt64 impairs the ER-mediated unfolded protein response in macrophages.


2004 ◽  
Vol 15 (6) ◽  
pp. 2537-2548 ◽  
Author(s):  
Satomi Nadanaka ◽  
Hiderou Yoshida ◽  
Fumi Kano ◽  
Masayuki Murata ◽  
Kazutoshi Mori

Newly synthesized secretory and transmembrane proteins are folded and assembled in the endoplasmic reticulum (ER) where an efficient quality control system operates so that only correctly folded molecules are allowed to move along the secretory pathway. The productive folding process in the ER has been thought to be supported by the unfolded protein response (UPR), which is activated by the accumulation of unfolded proteins in the ER. However, a dilemma has emerged; activation of ATF6, a key regulator of mammalian UPR, requires intracellular transport from the ER to the Golgi apparatus. This suggests that unfolded proteins might be leaked from the ER together with ATF6 in response to ER stress, exhibiting proteotoxicity in the secretory pathway. We show here that ATF6 and correctly folded proteins are transported to the Golgi apparatus via the same route and by the same mechanism under conditions of ER stress, whereas unfolded proteins are retained in the ER. Thus, activation of the UPR is compatible with the quality control in the ER and the ER possesses a remarkable ability to select proteins to be transported in mammalian cells in marked contrast to yeast cells, which actively utilize intracellular traffic to deal with unfolded proteins accumulated in the ER.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Sonam Grover ◽  
Tarina Sharma ◽  
Yadvir Singh ◽  
Sakshi Kohli ◽  
Manjunath P. ◽  
...  

ABSTRACT The genome of Mycobacterium tuberculosis , the causal organism of tuberculosis (TB), encodes a unique protein family known as the PE/PPE/PGRS family, present exclusively in the genus Mycobacterium and nowhere else in the living kingdom, with largely unexplored functions. We describe the functional significance of the PGRS domain of Rv0297, a member of this family. In silico analyses revealed the presence of intrinsically disordered stretches and putative endoplasmic reticulum (ER) localization signals in the PGRS domain of Rv0297 (Rv0297PGRS). The PGRS domain aids in ER localization, which was shown by infecting macrophage cells with M. tuberculosis and by overexpressing the protein by transfection in macrophage cells followed by activation of the unfolded protein response, as evident from increased expression of GRP78/GRP94 and CHOP/ATF4, leading to disruption of intracellular Ca 2+ homeostasis and increased nitric oxide (NO) and reactive oxygen species (ROS) production. The consequent activation of the effector caspase-8 resulted in apoptosis of macrophages, which was Toll-like receptor 4 (TLR4) dependent. Administration of recombinant Rv0297PGRS (rRv0297PGRS) also exhibited similar effects. These results implicate a hitherto-unknown role of the PGRS domain of the PE_PGRS protein family in ER stress-mediated cell death through TLR4. Since this protein is already known to be present at later stages of infection in human granulomas it points to the possibility of it being employed by M. tuberculosis for its dissemination via an apoptotic mechanism. IMPORTANCE Apoptosis is generally thought to be a defense mechanism in protecting the host against Mycobacterium tuberculosis in early stages of infection. However, apoptosis during later stages in lung granulomas may favor the bacterium in disseminating the disease. ER stress has been found to induce apoptosis in TB granulomas, in zones where apoptotic macrophages accumulate in mice and humans. In this study, we report ER stress-mediated apoptosis of host cells by the Rv0297-encoded PE_PGRS5 protein of M. tuberculosis exceptionally present in the pathogenic Mycobacterium genus. The PGRS domain of Rv0297 aids the protein in localizing to the ER and induces the unfolded protein response followed by apoptosis of macrophages. The effect of the Rv0297PGRS domain was found to be TLR4 dependent. This study presents novel insights on the strategies employed by M. tuberculosis to disseminate the disease.


2019 ◽  
Vol 20 (4) ◽  
pp. 857 ◽  
Author(s):  
Lorenza Sisinni ◽  
Michele Pietrafesa ◽  
Silvia Lepore ◽  
Francesca Maddalena ◽  
Valentina Condelli ◽  
...  

The unfolded protein response (UPR) is a stress response activated by the accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER) and its uncontrolled activation is mechanistically responsible for several human pathologies, including metabolic, neurodegenerative, and inflammatory diseases, and cancer. Indeed, ER stress and the downstream UPR activation lead to changes in the levels and activities of key regulators of cell survival and autophagy and this is physiologically finalized to restore metabolic homeostasis with the integration of pro-death or/and pro-survival signals. By contrast, the chronic activation of UPR in cancer cells is widely considered a mechanism of tumor progression. In this review, we focus on the relationship between ER stress, apoptosis, and autophagy in human breast cancer and the interplay between the activation of UPR and resistance to anticancer therapies with the aim to disclose novel therapeutic scenarios. The hypothesis that autophagy and UPR may provide novel molecular targets in human malignancies is discussed.


2016 ◽  
Vol 57 (1) ◽  
pp. R1-R17 ◽  
Author(s):  
Kira Meyerovich ◽  
Fernanda Ortis ◽  
Florent Allagnat ◽  
Alessandra K Cardozo

Insulin-secreting pancreatic β-cells are extremely dependent on their endoplasmic reticulum (ER) to cope with the oscillatory requirement of secreted insulin to maintain normoglycemia. Insulin translation and folding rely greatly on the unfolded protein response (UPR), an array of three main signaling pathways designed to maintain ER homeostasis and limit ER stress. However, prolonged or excessive UPR activation triggers alternative molecular pathways that can lead to β-cell dysfunction and apoptosis. An increasing number of studies suggest a role of these pro-apoptotic UPR pathways in the downfall of β-cells observed in diabetic patients. Particularly, the past few years highlighted a cross talk between the UPR and inflammation in the context of both type 1 (T1D) and type 2 diabetes (T2D). In this article, we describe the recent advances in research regarding the interplay between ER stress, the UPR, and inflammation in the context of β-cell apoptosis leading to diabetes.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Anush Bakunts ◽  
Andrea Orsi ◽  
Milena Vitale ◽  
Angela Cattaneo ◽  
Federica Lari ◽  
...  

Insufficient folding capacity of the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) to restore homeostasis. Yet, how the UPR achieves ER homeostatic readjustment is poorly investigated, as in most studies the ER stress that is elicited cannot be overcome. Here we show that a proteostatic insult, provoked by persistent expression of the secretory heavy chain of immunoglobulin M (µs), is well-tolerated in HeLa cells. Upon µs expression, its levels temporarily eclipse those of the ER chaperone BiP, leading to acute, full-geared UPR activation. Once BiP is in excess again, the UPR transitions to chronic, submaximal activation, indicating that the UPR senses ER stress in a ratiometric fashion. In this process, the ER expands about three-fold and becomes dominated by BiP. As the UPR is essential for successful ER homeostatic readjustment in the HeLa-µs model, it provides an ideal system for dissecting the intricacies of how the UPR evaluates and alleviates ER stress.


Sign in / Sign up

Export Citation Format

Share Document