scholarly journals Instable Trivial Solution of Autonomous Differential Systems with Quadratic Right-Hand Sides in a Cone

2011 ◽  
Vol 2011 ◽  
pp. 1-23 ◽  
Author(s):  
D. Ya. Khusainov ◽  
J. Diblík ◽  
Z. Svoboda ◽  
Z. Šmarda

The present investigation deals with global instability of a generaln-dimensional system of ordinary differential equations with quadratic right-hand sides. The global instability of the zero solution in a given cone is proved by Chetaev's method, assuming that the matrix of linear terms has a simple positive eigenvalue and the remaining eigenvalues have negative real parts. The sufficient conditions for global instability obtained are formulated by inequalities involving norms and eigenvalues of auxiliary matrices. In the proof, a result is used on the positivity of a general third-degree polynomial in two variables to estimate the sign of the full derivative of an appropriate function in a cone.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Josef Diblík ◽  
Irada Dzhalladova ◽  
Miroslava Růžičková

The paper deals with nonlinear differential systems with random parameters in a general form. A new method for construction of the Lyapunov functions is proposed and is used to obtain sufficient conditions forL2-stability of the trivial solution of the considered systems.


2019 ◽  
Vol 84 (4) ◽  
pp. 712-747 ◽  
Author(s):  
JinRong Wang ◽  
Mengmeng Li ◽  
Donal O’Regan

Abstract In this paper, we discuss Lyapunov regularity and stability for linear non-instantaneous impulsive differential systems. In particular, we give sufficient conditions to guarantee any non-trivial solution has a finite Lyapunov exponent and we prove an impulsive system is stable using the Lyapunov exponent for the solution. A new version of Perron’s theorem is given by introducing the associated adjoint impulsive system and some criteria for the existence of non-uniform exponential behaviour are given. In addition, we present a stability result for a small perturbed nonlinear impulsive system when the linear impulsive system admits a non-uniform exponential contraction. Finally, we give a bound for the regularity coefficient.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Daliang Zhao ◽  
Juan Mao

In this paper, sufficient conditions ensuring existence and multiplicity of positive solutions for a class of nonlinear singular fractional differential systems are derived with Riemann–Stieltjes coupled integral boundary value conditions in Banach Spaces. Nonlinear functions f(t,u,v) and g(t,u,v) in the considered systems are allowed to be singular at every variable. The boundary conditions here are coupled forms with Riemann–Stieltjes integrals. In order to overcome the difficulties arising from the singularity, a suitable cone is constructed through the properties of Green’s functions associated with the systems. The main tool used in the present paper is the fixed point theorem on cone. Lastly, an example is offered to show the effectiveness of our obtained new results.


2008 ◽  
Vol 15 (3) ◽  
pp. 555-569
Author(s):  
Tariel Kiguradze

Abstract In the rectangle Ω = [0, a] × [0, b] the nonlinear hyperbolic equation 𝑢(2,2) = 𝑓(𝑥, 𝑦, 𝑢) with the continuous right-hand side 𝑓 : Ω × ℝ → ℝ is considered. Unimprovable in a sense sufficient conditions of solvability of Dirichlet, Dirichlet–Nicoletti and Nicoletti boundary value problems are established.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Shyam Sundar Santra ◽  
Apurba Ghosh ◽  
Omar Bazighifan ◽  
Khaled Mohamed Khedher ◽  
Taher A. Nofal

AbstractIn this work, we present new necessary and sufficient conditions for the oscillation of a class of second-order neutral delay impulsive differential equations. Our oscillation results complement, simplify and improve recent results on oscillation theory of this type of nonlinear neutral impulsive differential equations that appear in the literature. An example is provided to illustrate the value of the main results.


2020 ◽  
Vol 18 (1) ◽  
pp. 1164-1172
Author(s):  
Jian Zhou ◽  
Shiyin Zhao

Abstract In this paper, firstly, we study the structural form of reflective integral for a given system. Then the sufficient conditions are obtained to ensure there exists the reflective integral with these structured form for such system. Secondly, we discuss the necessary conditions for the equivalence of such systems and a general three-dimensional differential system. And then, we apply the obtained results to the study of the behavior of their periodic solutions when such systems are periodic systems in t.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 934
Author(s):  
Shyam Sundar Santra ◽  
Khaled Mohamed Khedher ◽  
Kamsing Nonlaopon ◽  
Hijaz Ahmad

The oscillation of impulsive differential equations plays an important role in many applications in physics, biology and engineering. The symmetry helps to deciding the right way to study oscillatory behavior of solutions of impulsive differential equations. In this work, several sufficient conditions are established for oscillatory or asymptotic behavior of second-order neutral impulsive differential systems for various ranges of the bounded neutral coefficient under the canonical and non-canonical conditions. Here, one can see that if the differential equations is oscillatory (or converges to zero asymptotically), then the discrete equation of similar type do not disturb the oscillatory or asymptotic behavior of the impulsive system, when impulse satisfies the discrete equation. Further, some illustrative examples showing applicability of the new results are included.


1996 ◽  
Vol 28 (01) ◽  
pp. 114-165 ◽  
Author(s):  
H. R. Gail ◽  
S. L. Hantler ◽  
B. A. Taylor

When analyzing the equilibrium behavior of M/G/1 type Markov chains by transform methods, restrictive hypotheses are often made to avoid technical problems that arise in applying results from complex analysis and linear algebra. It is shown that such restrictive assumptions are unnecessary, and an analysis of these chains using generating functions is given under only the natural hypotheses that first moments (or second moments in the null recurrent case) exist. The key to the analysis is the identification of an important subspace of the space of bounded solutions of the system of homogeneous vector-valued Wiener–Hopf equations associated with the chain. In particular, the linear equations in the boundary probabilities obtained from the transform method are shown to correspond to a spectral basis of the shift operator on this subspace. Necessary and sufficient conditions under which the chain is ergodic, null recurrent or transient are derived in terms of properties of the matrix-valued generating functions determined by transitions of the Markov chain. In the transient case, the Martin exit boundary is identified and shown to be associated with certain eigenvalues and vectors of one of these generating functions. An equilibrium analysis of the class of G/M/1 type Markov chains by similar methods is also presented.


2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Dariusz Idczak ◽  
Stanisław Walczak

AbstractIn this paper, a new, variational concept of asymptotical stability of zero solution to an ordinary differential system of the second order, considered in Sobolev space, is presented. Sufficient conditions for an asymptotical stability in a variational sense with respect to initial condition and functional parameter (control) are given. Relation to the classical asymptotical stability is illustrated.


1977 ◽  
Vol 16 (3) ◽  
pp. 361-369
Author(s):  
M. Deza ◽  
Peter Eades

Necessary and sufficient conditions are given for a square matrix to te the matrix of distances of a circulant code. These conditions are used to obtain some inequalities for cyclic difference sets, and a necessary condition for the existence of circulant weighing matrices.


Sign in / Sign up

Export Citation Format

Share Document