scholarly journals Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Daisuke Sasaki ◽  
Kazuhiro Nakahashi

An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achieve high lift-to-drag ratio, and the optimal geometry is compared with a conventional configuration. Pylon shape is also modified to reduce aerodynamic interference effect. The final wing-fuselage-nacelle model is compared with the DLR F6 model to discuss the potential of Over-the-Wing-Nacelle-Mount geometry for an environmental-friendly future aircraft.

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 828
Author(s):  
Igor Rodriguez-Eguia ◽  
Iñigo Errasti ◽  
Unai Fernandez-Gamiz ◽  
Jesús María Blanco ◽  
Ekaitz Zulueta ◽  
...  

Trailing edge flaps (TEFs) are high-lift devices that generate changes in the lift and drag coefficients of an airfoil. A large number of 2D simulations are performed in this study, in order to measure these changes in aerodynamic coefficients and to analyze them for a given Reynolds number. Three different airfoils, namely NACA 0012, NACA 64(3)-618, and S810, are studied in relation to three combinations of the following parameters: angle of attack, flap angle (deflection), and flaplength. Results are in concordance with the aerodynamic results expected when studying a TEF on an airfoil, showing the effect exerted by the three parameters on both aerodynamic coefficients lift and drag. Depending on whether the airfoil flap is deployed on either the pressure zone or the suction zone, the lift-to-drag ratio, CL/CD, will increase or decrease, respectively. Besides, the use of a larger flap length will increase the higher values and decrease the lower values of the CL/CD ratio. In addition, an artificial neural network (ANN) based prediction model for aerodynamic forces was built through the results obtained from the research.


2021 ◽  
pp. 1-29
Author(s):  
K. Dhileep ◽  
D. Kumar ◽  
P.N. Gautham Vigneswar ◽  
P. Soni ◽  
S. Ghosh ◽  
...  

Abstract Camber morphing is an effective way to control the lift generated by any aerofoil and potentially improve the range (as measured by the lift-to-drag ratio) and endurance (as measured by $C_l^{3/2}/C_d$ ). This can be especially useful for fixed-wing Unmanned Aerial Vehicles (UAVs) undergoing different flying manoeuvres and flight phases. This work investigates the aerodynamic characteristics of the NACA0012 aerofoil morphed using a Single Corrugated Variable-Camber (SCVC) morphing approach. Structural analysis and morphed shapes are obtained based on small-deformation beam theory using chain calculations and validated using finite-element software. The aerofoil is then reconstructed from the camber line using a Radial Basis Function (RBF)-based interpolation method (J.H.S. Fincham and M.I. Friswell, “Aerodynamic optimisation of a camber morphing aerofoil,” Aerosp. Sci. Technol., 2015). The aerodynamic analysis is done by employing two different finite-volume solvers (OpenFOAM and ANSYS-Fluent) and a panel method code (XFoil). Results reveal that the aerodynamic coefficients predicted by the two finite-volume solvers using a fully turbulent flow assumption are similar but differ from those predicted by XFoil. The aerodynamic efficiency and endurance factor of morphed aerofoils indicate that morphing is beneficial at moderate to high lift requirements. Further, the optimal morphing angle increases with an increase in the required lift. Finally, it is observed for a fixed angle-of-attack that an optimum morphing angle exists for which the aerodynamic efficiency becomes maximum.


Author(s):  
B. D. Vick ◽  
W. Wrigglesworth ◽  
L. B. Scott ◽  
K. M. Ragsdell

Abstract A method has been developed and is demonstrated which determines the chord and twist distribution for a wind turbine with maximum power coefficient. Only small wind turbines (less than 10 kilowatts) are considered in this study, but the method could be used for larger wind turbines. Glauert determined a method for estimating the chord and twist distribution that will maximize the power coefficient if there is no drag. However, the method proposed here determines the chord and twist distribution which will maximize the power coefficient with the effect of drag included. Including drag in the analysis does not significantly affect the Glauert chord and twist distribution for airfoils with a high lift coefficient at the maximum lift to drag ratio. However, if the airfoil has a fairly low lift coefficient at its maximum lift to drag ratio due to its shape or a rough surface then significant improvement can be obtained in power coefficient by altering the Glauert chord and twist distribution according to the method proposed herein.


2003 ◽  
Vol 125 (4) ◽  
pp. 468-478 ◽  
Author(s):  
R. P. J. O. M. van Rooij ◽  
W. A. Timmer

In modern wind turbine blades, airfoils of more than 25% thickness can be found at mid-span and inboard locations. At mid-span, aerodynamic requirements dominate, demanding a high lift-to-drag ratio, moderate to high lift and low roughness sensitivity. Towards the root, structural requirements become more important. In this paper, the performance for the airfoil series DU FFA, S8xx, AH, Risø and NACA are reviewed. For the 25% and 30% thick airfoils, the best performing airfoils can be recognized by a restricted upper-surface thickness and an S-shaped lower surface for aft-loading. Differences in performance of the DU 91-W2-250 (25%), S814 (24%) and Risø-A1-24 (24%) airfoils are small. For a 30% thickness, the DU 97-W-300 meets the requirements best. Reduction of roughness sensitivity can be achieved both by proper design and by application of vortex generators on the upper surface of the airfoil. Maximum lift and lift-to-drag ratio are, in general, enhanced for the rough configuration when vortex generators are used. At inboard locations, 2-D wind tunnel tests do not represent the performance characteristics well because the influence of rotation is not included. The RFOIL code is believed to be capable of approximating the rotational effect. Results from this code indicate that rotational effects dramatically reduce roughness sensitivity effects at inboard locations. In particular, the change in lift characteristics in the case of leading edge roughness for the 35% and 40% thick DU airfoils, DU 00-W-350 and DU 00-W-401, respectively, is remarkable. As a result of the strong reduction of roughness sensitivity, the design for inboard airfoils can primarily focus on high lift and structural demands.


2015 ◽  
Vol 2015.68 (0) ◽  
pp. 167-168 ◽  
Author(s):  
Takahiro MAKIZONO ◽  
Gaku SASAKI ◽  
Hiroshi OCHI ◽  
Takaaki MATSUMOTO ◽  
Koichi YONEMOTO

Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1464
Author(s):  
Andrés Meana-Fernández ◽  
Lorena Díaz-Artos ◽  
Jesús Manuel Fernández Oro ◽  
Sandra Velarde-Suárez

In this work, an airfoil geometry optimized for vertical-axis wind turbine applications is presented. Different airfoil shapes have been analyzed with JavaFoil, a panel method software. Then, the results from the analysis have been used to optimize the performance of the proposed airfoil shape (UO-17-LDA). This airfoil presents a high lift-to-drag ratio and a delayed stall angle with respect to the original FX-63-137 airfoil, making it suitable for vertical-axis wind turbine applications. The practicality of JavaFoil for the comparison of different airfoil geometries has been verified, as it is capable of obtaining results for a wide number of flow conditions in small computational times and with a user-friendly interface. Nevertheless, the results diverge from the actual solution for high angles of attack (beyond stall).


2011 ◽  
Vol 115 (1168) ◽  
pp. 325-334 ◽  
Author(s):  
C. Xiao-Qing ◽  
H. Zhong-Xi ◽  
L. Jian-Xia ◽  
G. Xian-Zhong

Abstract Waverider serves as a good candidate for hypersonic vehicles. The typical waverider has sharp leading edge and no control face, which is inappropriate for practical use. This paper puts forward a method modifying the waverider, and the modification impact on the performance of waverider at hypersonic flow conditions is studied. The modification is based on blunted waverider, includes cutting the tip and introducing two control wings. The modification’s effect on aerodynamic performance is obtained and analysed through Computational Fluid Dynamics (CFD) techniques. When blunted with 2cm radius, the waverider retains its good aerodynamic performance and the heat flux at the stagnation point can be managed. Three factors of the introduced wing are argued, the fixed angle, aspect ratio and wing area. Results show that influence on the aerodynamic coefficient is slight and the vehicle retains its high lift-to-drag ratio. The main influences of the modification are the control ability and trim efficiency, which is the motivation of this work and can be adapted when designing a practical waverider.


Sign in / Sign up

Export Citation Format

Share Document