Modification impact on aerodynamic performance of hypersonic waverider

2011 ◽  
Vol 115 (1168) ◽  
pp. 325-334 ◽  
Author(s):  
C. Xiao-Qing ◽  
H. Zhong-Xi ◽  
L. Jian-Xia ◽  
G. Xian-Zhong

Abstract Waverider serves as a good candidate for hypersonic vehicles. The typical waverider has sharp leading edge and no control face, which is inappropriate for practical use. This paper puts forward a method modifying the waverider, and the modification impact on the performance of waverider at hypersonic flow conditions is studied. The modification is based on blunted waverider, includes cutting the tip and introducing two control wings. The modification’s effect on aerodynamic performance is obtained and analysed through Computational Fluid Dynamics (CFD) techniques. When blunted with 2cm radius, the waverider retains its good aerodynamic performance and the heat flux at the stagnation point can be managed. Three factors of the introduced wing are argued, the fixed angle, aspect ratio and wing area. Results show that influence on the aerodynamic coefficient is slight and the vehicle retains its high lift-to-drag ratio. The main influences of the modification are the control ability and trim efficiency, which is the motivation of this work and can be adapted when designing a practical waverider.

Author(s):  
Zhipeng Qu ◽  
Houdi Xiao ◽  
Mingyun Lv ◽  
Guangli Li ◽  
Cui Kai

Abastrct The waverider is deemed the most promising configuration for hypersonic vehicle with its high lift-to-drag ratio at design conditions. However, considering the serious aero-heating protection, the sharp leading edge must be blunted. The existing traditional bluntness methods including the following two types: “reducing material method” and “adding material method”. Compared to the initial waverider, the volume will be smaller or larger using the traditional methods. With the fixed blunted radius, the volume and aerodynamic performance is determined. In this paper, a new bluntness method which is named “mixing material method” is developed. In this new method, a new parameter is introduced based on the traditional two bluntness methods. Under fixed blunted radius, the volume and aerodynamic performance can be changed within a wide range by adjusting the parameter. When the parameter is 0 and 1, the novel blunted method degenerated into the “reducing material method” and “adding material method” respectively. The influence of new parameter on the aerodynamic characteristics and volume are studied by numerical simulation. Results show that the volume, lift and lift-to-drag ratio increases with the increase of the parameter under the fixed blunt radius, but simultaneously, the drag will also increase. Therefore, considering the different requirements of the air-breathing hypersonic aircrafts for the balance of thrust and drag, lift and weight, a suitable bluntness parameter can be selected to achieve a balance. This research can provide reference for hypersonic waverider vehicle design.


2003 ◽  
Vol 125 (4) ◽  
pp. 468-478 ◽  
Author(s):  
R. P. J. O. M. van Rooij ◽  
W. A. Timmer

In modern wind turbine blades, airfoils of more than 25% thickness can be found at mid-span and inboard locations. At mid-span, aerodynamic requirements dominate, demanding a high lift-to-drag ratio, moderate to high lift and low roughness sensitivity. Towards the root, structural requirements become more important. In this paper, the performance for the airfoil series DU FFA, S8xx, AH, Risø and NACA are reviewed. For the 25% and 30% thick airfoils, the best performing airfoils can be recognized by a restricted upper-surface thickness and an S-shaped lower surface for aft-loading. Differences in performance of the DU 91-W2-250 (25%), S814 (24%) and Risø-A1-24 (24%) airfoils are small. For a 30% thickness, the DU 97-W-300 meets the requirements best. Reduction of roughness sensitivity can be achieved both by proper design and by application of vortex generators on the upper surface of the airfoil. Maximum lift and lift-to-drag ratio are, in general, enhanced for the rough configuration when vortex generators are used. At inboard locations, 2-D wind tunnel tests do not represent the performance characteristics well because the influence of rotation is not included. The RFOIL code is believed to be capable of approximating the rotational effect. Results from this code indicate that rotational effects dramatically reduce roughness sensitivity effects at inboard locations. In particular, the change in lift characteristics in the case of leading edge roughness for the 35% and 40% thick DU airfoils, DU 00-W-350 and DU 00-W-401, respectively, is remarkable. As a result of the strong reduction of roughness sensitivity, the design for inboard airfoils can primarily focus on high lift and structural demands.


Author(s):  
R. P. J. O. M. van Rooij ◽  
W. A. Timmer

In modern wind turbine blades airfoils of more than 25% thickness can be found at mid-span and inboard locations. In particular at mid-span aerodynamic requirements dominate, demanding a high lift-to-drag ratio, moderate to high lift and low roughness sensitivity. Towards the root srtuctural requirements become more important. In this paper the performance for the airfoil series DU, FFA, S8xx, AH, Riso̸ and NACA are reviewed. For the 25% and 30% thick airfoils the best performing airfoils can be recognized by a restricted upper surface thickness and a S-shaped lower surface for aft-loading. Differences in performance of the DU 91-W2-250 (25%), S814 (24%) and Riso̸-A1-24 (24%) airfoil are small. For a 30% thickness the DU 97-W-300 meets the requirements best. At inboard locations the influence of rotation can be significant and 2d wind tunnel tests do not represent the characteristics well. The RFOIL code is believed to be capable of approximating the rotational effect. In particular the change in lift characteristics in the case of leading edge roughness for the 35% and 40% thick DU airfoils, respectively DU 00-W-350 and DU 00-W–401, is remarkable. Due to the strong reduction of roughness sensitivity the design for inboard airfoils could primarily focus on high lift and structural demands.


2019 ◽  
Vol 10 (1) ◽  
pp. 180 ◽  
Author(s):  
Shagufta Rashid ◽  
Fahad Nawaz ◽  
Adnan Maqsood ◽  
Rizwan Riaz ◽  
Shuaib Salamat

In this research paper, investigations of counter flow (opposing) jet on the aerodynamic performance, and flight stability characteristics of an airfoil with blunt leading-edge in supersonic regime are performed. Unsteady Reynolds-Averaged Navier-Stokes ( U R A N S ) based solver is used to model the flow field. The effect of angle of attack ( α ), free-stream Mach number ( M ∞ ), and pressure ratio ( P R ) on aerodynamic performance of airfoil with and without jet are compared. The results indicate that the opposing jet reduces drag from 30 % to 70 % , improves the maximum lift-to-drag ratio from 2.5 to 4.0, and increases shock stand-off distance from 15 % to 35 % depending on flow conditions. The effect of opposing jet on longitudinal flight stability characteristics, studied for the first time, indicate improvement in dynamic stability coefficients ( C m q + C m α ˙ ) at low angles of attack. It is concluded that the opposing jet can help mitigate flight disturbances in supersonic regime.


2014 ◽  
Vol 1016 ◽  
pp. 354-358 ◽  
Author(s):  
Wan Fang Yan ◽  
Jiang Hao Wu ◽  
Yan Lai Zhang

A 350-passenger BWB with a distributed propulsion system configuration is carried out and its aerodynamic performance in cruising and taking off are analyzed and discussed. It is shown from computation that the integrated configuration has a commendable aerodynamic performance in cruising and taking off. The cruise lift to drag ratio is reach to 24.0 in cruising. The ingestion effect of the propulsion system leads to a high lift at a low speed. The maximum lift coefficient CLmax is 1.62 when α=20° in taking off. In addition, the ingestion also delays the flow separation on the upper surface of center body, which contributes to a well stall performance of the configuration at large angle of attack.


2013 ◽  
Vol 390 ◽  
pp. 134-140
Author(s):  
Feng Ding ◽  
Jun Liu ◽  
Liang Jin ◽  
Shi Bin Luo

Waverider with a high lift-to-drag ratio has drawn an ever increasing attention. Usually, waverider is obtained by tracing streamline. A simplified generation method of waverider is introduced in the present paper named geometric relations method. Three groups of cone-derived waverider configuration, respectively, based on the geometric relations method and the streamline tracing method are generated for the comparisons of the shape factors, inviscid aerodynamic characteristics, and flow field structures by investigating the numerical simulation results. The results show that the effect of the Mach number and the shock angle on the differences caused by the two methods are not significantly different. While the volumetric efficiency of the waverider configuration based on the geometric relations method is larger than those based on the streamline tracing, the inviscid lift-to-drag ratio of the former is less than the latter. Although the geometric relations method is much easier than the streamline tracing method, the simplified method reduces the aerodynamic performance of the waverider configuration.


Author(s):  
Nvzi Bao ◽  
Yehui Peng ◽  
Heying Feng ◽  
Chenghao Yang

Variable camber is an effective method for improving the flight efficiency of large aircraft, and has attracted the attention of researchers. This work focused on the optimization of a variable camber airfoil. First, the influences of the variable camber of the leading and trailing edges on the airfoil aerodynamic performance were investigated using a computational fluid dynamics numerical simulation. An initial database was established for a deep neural network. Second, an iterative algorithm was constructed to optimize the variable camber airfoil in terms of the rotation angle of the leading edge, deflection position of the leading edge, rotation angle of the trailing edge, and deflection position of the trailing edge. A genetic algorithm was used in each iteration to maximize the lift coefficient and lift-to-drag ratio, as predicted using a deep neural network (DNN). The optimal results were validated using Fluent. If the DNN result approximated the Fluent results, the iterative process was stopped. Otherwise, the Fluent results were inserted into the database to update the DNN prediction model. The optimization results showed that the lift-to-drag ratio of the 2D airfoil could be increased by more than 14 when the angle of attack was less than 8° relative to the original airfoil. Furthermore, to validate the 2D optimal results, the optimized 2D airfoil was stretched into 3D, and it was discovered that the aerodynamic performance trend of the 3D airfoil with respect to the angle of attack was basically the same as that of the 2D airfoil. In addition, the corresponding 3D airfoil improved the aerodynamic performance and reduced the noise at a high frequency (by approximately 16 dB). In contrast, the noise in the low and medium frequencies remained unchanged. Therefore, the optimization method and results can provide a reference for the aerodynamic design and acoustic design of large civil aircraft wings.


2022 ◽  
Vol 12 (2) ◽  
pp. 752
Author(s):  
Mehedi Hasan ◽  
Stephane Redonnet ◽  
Andras Hernadi

With regard to the current needs for greener aviation, this study focuses on a novel concept of Box-Wing Aircraft (BWA). Labelled SmartLiner (BWA/SL), this conceptual aircraft comes as a triplane comprising backward and forward swept wings. The aerodynamic performance and structural characteristics of this BWA/SL aircraft are here explored through numerical simulation, using Computational Fluid Dynamics (CFD) and Fluid-Structure Interaction (FSI). The computational approach is first validated using NASA’s Common Research Model (CRM) aircraft, which is then taken as a reference solution against which to compare the aero-structural merits of the BWA/SL concept. Results show that, although its design is still preliminary and lacks optimization, the BWA/SL aircraft exhibits very decent aerodynamic performance, with higher lifting capacities and a reasonable lift-to-drag ratio. Moreover, thanks to the closed frame of its peculiar planform, it demonstrates superior structural characteristics, including under extreme loading scenarios. Based on this preliminary analysis and considering the room left for its further optimization, this conceptual aircraft thus appears as a potentially promising alternative for the development of more environmentally friendly airliners.


Author(s):  
Feng Ding ◽  
Jun Liu ◽  
Chi-bing Shen ◽  
Wei Huang

Hypersonic vehicles have become one of the key areas for development in the aerospace industry, particularly in reference to long-range precision strike capabilities. A waverider is any supersonic or hypersonic lifting body that is characterized by an attached, or nearly attached, bow shock wave along its leading edge. Previous studies have shown that an osculating cone waverider can be used as the forebody of a hypersonic airframe-engine integrated aircraft. It enables sufficient pre-compression for the inlet system. Usually, an osculating cone waverider is designed using the streamline tracing technique. In this work, a simplified osculating cone method is proposed, termed the geometric relationship method. Two types of osculating cone waveriders are obtained applying the simplified and the conventional approach, respectively. Numerical methods are employed to analyze the differences between both types of waveriders. The obtained results show that the proposed approach in this paper can simplify the design process of the osculating cone waverider with a bit larger drag, lower lift-to-drag ratio, worse homogeneous flow properties at the inlet position, but improved internal volume and volumetric efficiency.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 828
Author(s):  
Igor Rodriguez-Eguia ◽  
Iñigo Errasti ◽  
Unai Fernandez-Gamiz ◽  
Jesús María Blanco ◽  
Ekaitz Zulueta ◽  
...  

Trailing edge flaps (TEFs) are high-lift devices that generate changes in the lift and drag coefficients of an airfoil. A large number of 2D simulations are performed in this study, in order to measure these changes in aerodynamic coefficients and to analyze them for a given Reynolds number. Three different airfoils, namely NACA 0012, NACA 64(3)-618, and S810, are studied in relation to three combinations of the following parameters: angle of attack, flap angle (deflection), and flaplength. Results are in concordance with the aerodynamic results expected when studying a TEF on an airfoil, showing the effect exerted by the three parameters on both aerodynamic coefficients lift and drag. Depending on whether the airfoil flap is deployed on either the pressure zone or the suction zone, the lift-to-drag ratio, CL/CD, will increase or decrease, respectively. Besides, the use of a larger flap length will increase the higher values and decrease the lower values of the CL/CD ratio. In addition, an artificial neural network (ANN) based prediction model for aerodynamic forces was built through the results obtained from the research.


Sign in / Sign up

Export Citation Format

Share Document