scholarly journals Dynamically Focused Gaussian Beams for Seismic Imaging

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Robert L. Nowack

An initial study is performed in which dynamically focused Gaussian beams are investigated for seismic imaging. Focused Gaussian beams away from the source and receiver plane allow the narrowest and planar portions of the beams to occur at the depth of a specific target structure. To match the seismic data, quadratic phase corrections are required for the local slant stacks of the surface data. To provide additional control of the imaging process, dynamic focusing is investigated where all subsurface points are specified to have the same planar beam fronts. This gives the effect of using nondiffracting beams, but actually results from the use of multiple focusing depths for each Gaussian beam. However, now different local slant stacks must be performed depending on the position of the subsurface scattering point. To speed up the process, slant stacking of the local data windows is varied to match the focusing depths along individual beams when tracked back into the medium. The approach is tested with a simple model of 5-point scatterers which are then imaged with the data, and then to the imaging of a single dynamically focused beam for one shot gather computed from the Sigsbee2A model.

2013 ◽  
Vol 6 (3) ◽  
pp. 3743-3786 ◽  
Author(s):  
C. E. Castro ◽  
J. Behrens ◽  
C. Pelties

Abstract. We implement the ADER-DG numerical method using the CUDA-C language to run the code in a Graphic Processing Unit (GPU). We focus on solving linear hyperbolic partial differential equations where the method can be expressed as a combination of precomputed matrix multiplications becoming a good candidate to be used on the GPU hardware. Moreover, the method is arbitrarily high-order involving intensive work on local data, a property that is also beneficial for the target hardware. We compare our GPU implementation against CPU versions of the same method observing similar convergence properties up to a threshold where the error remains fixed. This behaviour is in agreement with the CPU version but the threshold is larger that in the CPU case. We also observe a big difference when considering single and double precision where in the first case the threshold error is significantly larger. Finally, we did observe a speed up factor in computational time but this is relative to the specific test or benchmark problem.


Author(s):  
H.A. Cohen ◽  
W. Chiu

The goal of imaging the finest detail possible in biological specimens leads to contradictory requirements for the choice of an electron dose. The dose should be as low as possible to minimize object damage, yet as high as possible to optimize image statistics. For specimens that are protected by low temperatures or for which the low resolution associated with negative stain is acceptable, the first condition may be partially relaxed, allowing the use of (for example) 6 to 10 e/Å2. However, this medium dose is marginal for obtaining the contrast transfer function (CTF) of the microscope, which is necessary to allow phase corrections to the image. We have explored two parameters that affect the CTF under medium dose conditions.Figure 1 displays the CTF for carbon (C, row 1) and triafol plus carbon (T+C, row 2). For any column, the images to which the CTF correspond were from a carbon covered hole (C) and the adjacent triafol plus carbon support film (T+C), both recorded on the same micrograph; therefore the imaging parameters of defocus, illumination angle, and electron statistics were identical.


Author(s):  
D.R. Jackson ◽  
J.H. Hoofnagle ◽  
A.N. Schulman ◽  
J.L. Dienstag ◽  
R.H. Purcell ◽  
...  

Using immune electron microscopy Feinstone et. al. demonstrated the presence of a 27 nm virus-like particle in acute-phase stools of patients with viral hepatitis, type A, These hepatitis A antigen (HA Ag) particles were aggregated by convalescent serum from patients with type A hepatitis but not by pre-infection serum. Subsequently Dienstag et. al. and Maynard et. al. produced acute hepatitis in chimpanzees by inoculation with human stool containing HA Ag. During the early acute disease, virus like particles antigenically, morphologically and biophysically identical to the human HA Ag particle were found in chimpanzee stool. Recently Hilleman et. al. have described similar particles in liver and serum of marmosets infected with hepatitis A virus (HAV). We have investigated liver, bile and stool from chimpanzees and marmosets experimentally infected with HAV. In an initial study, a chimpanzee (no.785) inoculated with HA Ag-containing stool developed elevated liver enzymes 21 days after exposure.


Author(s):  
Brian Cross

A relatively new entry, in the field of microscopy, is the Scanning X-Ray Fluorescence Microscope (SXRFM). Using this type of instrument (e.g. Kevex Omicron X-ray Microprobe), one can obtain multiple elemental x-ray images, from the analysis of materials which show heterogeneity. The SXRFM obtains images by collimating an x-ray beam (e.g. 100 μm diameter), and then scanning the sample with a high-speed x-y stage. To speed up the image acquisition, data is acquired "on-the-fly" by slew-scanning the stage along the x-axis, like a TV or SEM scan. To reduce the overhead from "fly-back," the images can be acquired by bi-directional scanning of the x-axis. This results in very little overhead with the re-positioning of the sample stage. The image acquisition rate is dominated by the x-ray acquisition rate. Therefore, the total x-ray image acquisition rate, using the SXRFM, is very comparable to an SEM. Although the x-ray spatial resolution of the SXRFM is worse than an SEM (say 100 vs. 2 μm), there are several other advantages.


Author(s):  
A. G. Jackson ◽  
M. Rowe

Diffraction intensities from intermetallic compounds are, in the kinematic approximation, proportional to the scattering amplitude from the element doing the scattering. More detailed calculations have shown that site symmetry and occupation by various atom species also affects the intensity in a diffracted beam. [1] Hence, by measuring the intensities of beams, or their ratios, the occupancy can be estimated. Measurement of the intensity values also allows structure calculations to be made to determine the spatial distribution of the potentials doing the scattering. Thermal effects are also present as a background contribution. Inelastic effects such as loss or absorption/excitation complicate the intensity behavior, and dynamical theory is required to estimate the intensity value.The dynamic range of currents in diffracted beams can be 104or 105:1. Hence, detection of such information requires a means for collecting the intensity over a signal-to-noise range beyond that obtainable with a single film plate, which has a S/N of about 103:1. Although such a collection system is not available currently, a simple system consisting of instrumentation on an existing STEM can be used as a proof of concept which has a S/N of about 255:1, limited by the 8 bit pixel attributes used in the electronics. Use of 24 bit pixel attributes would easily allowthe desired noise range to be attained in the processing instrumentation. The S/N of the scintillator used by the photoelectron sensor is about 106 to 1, well beyond the S/N goal. The trade-off that must be made is the time for acquiring the signal, since the pattern can be obtained in seconds using film plates, compared to 10 to 20 minutes for a pattern to be acquired using the digital scan. Parallel acquisition would, of course, speed up this process immensely.


Sign in / Sign up

Export Citation Format

Share Document