scholarly journals Robust Position Control of PMSM Using Fractional-Order Sliding Mode Controller

2012 ◽  
Vol 2012 ◽  
pp. 1-33 ◽  
Author(s):  
Jiacai Huang ◽  
Hongsheng Li ◽  
YangQuan Chen ◽  
Qinghong Xu

A new robust fractional-order sliding mode controller (FOSMC) is proposed for the position control of a permanent magnet synchronous motor (PMSM). The sliding mode controller (SMC), which is insensitive to uncertainties and load disturbances, is studied widely in the application of PMSM drive. In the existing SMC method, the sliding surface is usually designed based on the integer-order integration or differentiation of the state variables, while in this proposed robust FOSMC algorithm, the sliding surface is designed based on the fractional-order calculus of the state variables. In fact, the conventional SMC method can be seen as a special case of the proposed FOSMC method. The performance and robustness of the proposed method are analyzed and tested for nonlinear load torque disturbances, and simulation results show that the proposed algorithm is more robust and effective than the conventional SMC method.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yassine El Houm ◽  
Ahmed Abbou ◽  
Moussa Labbadi ◽  
Mohamed Cherkaoui

This paper deals with the design of a novel modified supertwisting fast nonlinear sliding mode controller (MSTFNSMC) to stabilize a quadrotor system under time-varying disturbances. The suggested control strategy is based on a modified supertwisting controller with a fast nonlinear sliding surface to improve the tracking performance. The paper suggests a simple optimization tool built-in MATLAB/Simulink to tune the proposed controller parameters. Fast convergence of state variables is established by using a nonlinear sliding surface for rotational and translational subsystems. The modified supertwisting controller is developed to suppress the effect of chattering, reject disturbances, and ensure robustness against external disturbance effect. The stability of the proposed controller (MSTFNSMC) is proved using the Lyapunov theory. The performance of the proposed MSTFNSMC approach is compared with the supertwisting sliding mode controller (STSMC) by numerical simulations to verify its effectiveness.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chenhui Wang

Some sufficient conditions, which are valid for stability check of fractional-order nonlinear systems, are given in this paper. Based on these results, the synchronization of two fractional-order chaotic systems is investigated. A novel fractional-order sliding surface, which is composed of a synchronization error and its fractional-order integral, is introduced. The asymptotical stability of the synchronization error dynamical system can be guaranteed by the proposed fractional-order sliding mode controller. Finally, two numerical examples are given to show the feasibility of the proposed methods.


2021 ◽  
Vol 9 (3A) ◽  
Author(s):  
Fardila Mohd Zaihidee ◽  
◽  
Saad Mekhilef ◽  
Marizan Mubin ◽  
◽  
...  

This paper proposed a fractional order PID sliding mode control (FOSMC-PID) for speed regulation of permanent magnet synchronous motor (PMSM). Fractional calculus has been incorporated in sliding mode controller (SMC) design to enhance chattering suppression ability. However, the design of fractional sliding surface is crucial to ensure that speed tracking accuracy is not jeopardized. The proposed controller is designed with a fractional order PID sliding surface, which balances the characteristics of sliding surface with PI or PD structure in terms of robustness and dynamic performance of the controller. By simulation, speed tracking is proven to be faster and more robust with the proposed controller compared to SMC with integer order. Both integration and derivative terms in the surface design outperform FOSMC-PI and FOSMC-PD in terms of disturbance rejection and chattering. Experimental validation proves the advantage of the proposed controller in terms of robustness.


Author(s):  
Sara Dadras ◽  
Soodeh Dadras ◽  
HamidReza Momeni

A design of linear matrix inequality (LMI)-based fractional-order surface for sliding-mode controller of a class of uncertain fractional-order nonlinear systems (FO-NSs) is proposed in this paper. A new switching law is achieved guaranteeing the reachability condition. This control law is established to obtain a sliding-mode controller (SMC) capable of deriving the state trajectories onto the fractional-order integral switching surface and maintain the sliding motion. Using LMIs, a sufficient condition for existence of the sliding surface is derived which ensures the t−α asymptotical stability on the sliding surface. Through a numerical example, the superior performance of the new fractional-order sliding mode controller is illustrated in comparison with a previously proposed method.


2020 ◽  
Vol 42 (16) ◽  
pp. 3196-3215
Author(s):  
Osman Eray ◽  
Sezai Tokat

The novelty of this paper is the usage of a time-varying sliding surface with a fractional-order sliding mode controller. The objective of the controller is to allow the system states to move to the sliding surface and remain on it so as to ensure the asymptotic stability of the closed-loop system. The Lyapunov stability method is adopted to verify the stability of the controller. Firstly, by using the geometric coordinate transformation that is formerly defined for conventional sliding mode controller, a novel fractional-order sliding surface is defined. The time-varying fractional-order sliding surface is then rotated in the region in which the system state trajectories are stable. The adjustment of the sliding surface slope on the new coordinate axes is achieved by tuning a parameter defined as a sigmoid function. Then, a new control rule is derived. Numerical simulations are performed on the nonlinear mass-spring-damper and 2-DOF robot manipulator system models with parameter uncertainties and bounded external disturbances. The proposed controller is compared with the conventional sliding mode controller with a constant sliding surface and the fractional-order sliding mode controller with a constant sliding surface. Simulation results have shown improved performance of the proposed controller in terms of a decrease in the reaching and settling time, and robustness to disturbances as compared with the related controllers. Moreover, it is seen that the designed controller provides an improvement in the error state trajectories.


2021 ◽  
Author(s):  
Ehsan Badfar ◽  
Effat Jalaeian Zaferani ◽  
Amirhossein Nikoofard

Abstract In this research, the vital problem of Covid-19 mitigation is looked at from an engineering point of view. At first, the behavior of coronavirus in society is expressed by a set of ordinary differential equations. In the proposed model, the control input signals are vaccination, social distance, and medical treatment. The unknown parameters of the system are estimated by Long Short-Term Memory (LSTM) algorithm. In the LSTM algorithm, the problem of long-term dependency is prevented. The uncertainty and measurement noise is an inherent characteristic of the epidemiological models. For this reason, an extended Kalman filter (EKF) is developed to estimate the state variables of the proposed model. In the rest of paper, a robust sliding mode controller is designed to control the spread of coronavirus under vaccination, social distance, and medical treatment. The stability of the closed-loop system is guaranteed by the Lyapunov theorem. The official confirmed data provided by the Iranian ministry of health authorities are employed to simulate the proposed algorithms. It is understood from simulation results that global vaccination has the potential to produce herd immunity in long-term. Under the proposed controller, daily Covid-19 infections and deaths become less than 500 and 10 people, respectively.


Author(s):  
José André Robles Loro ◽  

This paper propose a reduced-order sliding mode controller based on a sliding mode observer applied to a Surface Mounted Permanent Magnet Synchronous Motor (SM-PMSM). The external disturbances are considered in the design of the controller in order to provide good results and accuracy of the system. Additionally, the corresponding observer is used to estimate the rotor position. Simulations and experiment results are shown to confirm the effectiveness of the proposed controller and observer.


Sign in / Sign up

Export Citation Format

Share Document