scholarly journals Studies on the ns-IR-Laser-Induced Plasma Parameters in the Vanadium Oxide

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Arnab Sarkar ◽  
Raju V. Shah ◽  
D. Alamelu ◽  
Suresh K. Aggarwal

We report spectroscopic studies of laser-induced plasma (LIP) produced by ns-IR-Nd:YAG laser light pulses of different energies onto four different oxides of vanadium (VO, V2O3, VO2, and V2O5) in air under atmospheric pressure. For each oxide with a different oxidation state of vanadium, both electron density and plasma temperature were calculated for different time delays and laser pulse energies. The plasma temperature was determined from Boltzmann plot method, whereas the electron number density was estimated from the Saha equation. The decay rates for plasma temperature as well as electron density were observed to follow power law and were independent of the nature of vanadium oxide. These investigations provide an insight to optimize various parameters during LIBS analysis of vanadium-based matrices.

2016 ◽  
Vol 78 (3) ◽  
Author(s):  
Zuhaib Haider ◽  
Kashif Chaudhary ◽  
Sufi Roslan ◽  
Jalil Ali ◽  
Yusof Munajat

Laser induced plasma provides information about the elemental composition of sample surface and through spectroscopy vital information about plasma dynamics can be obtained. In this paper we present the diagnostics of laser induced plasma at various pressures of Air, Helium and Argon gases. Graphite sample was ablated with Q-smart 850 laser while spectra were captured  Plasma parameters have been calculated by using well known methods based on Saha and Boltzmann equations. Plasma temperature was calculated relative intensity of ionic carbon lines CII 251.21 nm and CII 426.73 nm while the electron density was determined by using spectroscopic information of CI 247.85 nm and CII 426.73 nm emission lines in Saha equation. Plasma temperature and electron density were found to be dependent upon nature and pressure of the ambient atmosphere. Higher temperatures and electron densities were obtained in the presence of Air as ambient environment that is attributed to electrical and physical properties of the Air. Keeping into consideration the plasma expansion in various environments the selection of a suitable ambient pressure can be made on the basis of spectral diagnostics of plasma for a particular laser energy to obtain desirable plasma temperature and electron density suited for certain applications.


2015 ◽  
Vol 33 (4) ◽  
pp. 471-479 ◽  
Author(s):  
X. H. Shen ◽  
X. Zhang ◽  
J. Liu ◽  
S. F. Zhao ◽  
G. P. Yuan

Abstract. Ionospheric perturbations in plasma parameters have been observed before large earthquakes, but the correlation between different parameters has been less studied in previous research. The present study is focused on the relationship between electron density (Ne) and temperature (Te) observed by the DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) satellite during local nighttime, in which a positive correlation has been revealed near the equator and a weak correlation at mid- and low latitudes over both hemispheres. Based on this normal background analysis, the negative correlation with the lowest percent in all Ne and Te points is studied before and after large earthquakes at mid- and low latitudes. The multiparameter observations exhibited typical synchronous disturbances before the Chile M8.8 earthquake in 2010 and the Pu'er M6.4 in 2007, and Te varied inversely with Ne over the epicentral areas. Moreover, statistical analysis has been done by selecting the orbits at a distance of 1000 km and ±7 days before and after the global earthquakes. Enhanced negative correlation coefficients lower than −0.5 between Ne and Te are found in 42% of points to be connected with earthquakes. The correlation median values at different seismic levels show a clear decrease with earthquakes larger than 7. Finally, the electric-field-coupling model is discussed; furthermore, a digital simulation has been carried out by SAMI2 (Sami2 is Another Model of the Ionosphere), which illustrates that the external electric field in the ionosphere can strengthen the negative correlation in Ne and Te at a lower latitude relative to the disturbed source due to the effects of the geomagnetic field. Although seismic activity is not the only source to cause the inverse Ne–Te variations, the present results demonstrate one possibly useful tool in seismo-electromagnetic anomaly differentiation, and a comprehensive analysis with multiple parameters helps to further understand the seismo–ionospheric coupling mechanism. \\keywords{Ionosphere (plasma temperature and density)}


2019 ◽  
Vol 19 (2) ◽  
pp. 430
Author(s):  
Abdul Jabbar ◽  
Mahmood Akhtar ◽  
Shaukat Mehmood ◽  
Koo Hendrick Kurniawan ◽  
Rinda Hedwig ◽  
...  

Laser ablation chemical and spectroscopic studies of Calotropis procera, Chenopodium ambrosioides, and Nerium indicum leaves was performed using 1064 nm Nd: YAG laser in air at different pressure and time delay. These medicinal plant’s leaves are used by local people for different diseases. The knowledge of medicinal and toxic metals in these plants is very important. We have presented time-resolved studies of different elements and how their lives change with different delay time. C, H, Si, Al, Fe, Cu, Ca, Mg, Na, K, N, O, Sr and Ba have been detected in all the three samples with a molecular form of Carbon and Nitrogen band. We have detected C, H, N, and O as a major element while, Fe, Cu, Mg, K and Ca as essential medicinal metals with other trace elements such as Si, Sr, Al and Ba in all the three plants leaves. We present 1 µs delay time is the best time for elements lifetime in time resolved studies. The behaviour of intensity with different pressures was also studied and it was concluded that 7 torr was the best pressure for the maximum value of intensity. In particular, the electron density and the temperatures of the plasma were reported. The temperature was calculated from the well-known Boltzmann plot method and electron density was estimated from the stark broadened profile of the Hα line.


2016 ◽  
Vol 78 (3) ◽  
Author(s):  
Nurul Shuhada Tan Halid ◽  
Roslinda Zainal ◽  
Yaacob Mat Daud

LIBS plasma produced by a 1064 nm Q-switched Nd:YAG laser in an atmospheric pressure was studied for the stainless steel sample. The laser output energy 150 mJ with pulse duration of 6 ns. The plasma emission spectrum was recorded by the LR1 Spectrometer connected to the fibre optic. The plasma temperature and electron density of each element were estimated by time-resolved spectroscopy of neutral atom and ion line emission. The plasma temperature was obtained from the Boltzmann plot method and their electron density was determined by using Saha-Boltzmann equation method. The preliminary qualitative LIBS analysis shows that several elements contained in the stainless steel. The element detected was Cu, Fe, Mn, Ni, and Cr. The results shows that Mn and Fe has the highest plasma temperature of 1.2 eV,  but the electron density of Mn was the highest with value 4.6x1020 cm-3, while the Cu has the lowest temperature that is 0.73 eV with the electron density 2.8x1017 cm-3. The results are discussed.


2016 ◽  
Vol 30 (16) ◽  
pp. 1650197 ◽  
Author(s):  
Jian He ◽  
Qingguo Zhang

For simple plasma diagnostics for laser-induced plasma (LIP) under the condition of optically thin, taking the Cu I spectral lines produced by the laser-induced copper plasma, we investigate a simple method for temperature and electron density diagnostics, and we obtain the plasma temperature which has 104 K order of magnitude and the averaged electron density is [Formula: see text], which are in agreement with that obtained by other methods. This investigation will be significant for spectral diagnostics for LIP.


2011 ◽  
Vol 5 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Kanmani Subbu Subbian ◽  
◽  
Ramkumar Janakarajan ◽  
Dhamodaran Santhanagopalan ◽  

Fabricating micro/nano-features in devices and largescale production with short lead times is challenging, and many individual and hybrid processes have been developed to meet this challenge. Among nonconventional processes, micro-electric discharge machining (µ-EDM) has many advantages due to the possibility of precise and accurate 2D and 3D machining of complex shapes. Dry µ-EDM is used to process assembled or semi-assembled products. Attempts are being made to improve the µ-EDM process, and further improvement is possible through better understanding the role of discharge plasma in the machining process. We studied plasma and crater characteristics during dry µ-EDM, calculating plasma parameters for different discharge energies using optical emission spectroscopy. Line pair method and modified Saha equations are used to calculate plasma temperature and electron density respectively. Craters were morphologically analyzed using scanning electron microscopy (SEM), and plasma and crater characteristics on stainless steel and silicon were compared.


2021 ◽  
pp. 2948-2955
Author(s):  
Maryam M. Shehab ◽  
Kadhim A. Aadim

      In this paper, the optical emission spectrum (OES) technique was used to analyze the spectrum resulting from the (CdO:CoO)  plasma in air, produced by Nd:YAG laser with λ=1064 nm, τ=10 ns, a focal length of 10 cm, and a range of energy of 200-500 mJ. We identified laser-induced plasma parameters such as electron temperature (Te) using Boltzmann plot method, density of electron (ne), length of Debye (λD), frequency of plasma (fp), and number of Debye (ND), using two-Line-Ratio method. At a mixing ratio of X= 0.5, the (CdO:CoO) plasma spectrum was recorded for different energies. The results of plasma parameters caused by laser showed that, with the increase in laser energy, the values of Te, ne and fp were increased, while the value of λD was decreased. The calculated electron temperature value was in the range of 0.449-0.619 eV at ratio X=0.5


2021 ◽  
pp. 000370282110133
Author(s):  
Mohamed Fikry ◽  
Ibraheem A. Alhijry ◽  
A. M. Aboulfotouh ◽  
Ashraf M. EL Sherbini

A linear Boltzmann plot was constructed using Cu I-lines of well-known atomic parameters. Aligning other spectral lines to the plot was adopted as a viable way to estimate the most probable values of Stark broadening parameters of Cu I-lines at 330.79, 359.91, and 360.2 nm. Plasma was generated by focusing of Nd: YAG laser radiation at wavelength 532 nm on a pure copper target in open air. Plasma emission was recorded at delay times of 3, 4, 5, 7, and 10 μs. The in situ optically thin H<sub>α</sub>-line was used to determine the plasma reference electron density over the entire experiment. Following this method, the missing values of the Stark broadening parameters of the three Cu-I lines turn out to be about 0.15 ± 0.05 Å (for 330.79 nm transition) and 0.17 ± 0.05 Å (for 359.91, and 360.20 nm transition) at reference electron density of (1 ± 0.09)×10<sup>17</sup> cm<sup>-3</sup> and temperature of 10800 ± 630 K. The apparent variation in plasma parameters at different delay times was found to scale with electron density and temperature as <i>~ n<sub>e</sub>.T<sub>e</sub><sup>0.166</sup></i>.


2013 ◽  
Vol 46 (3) ◽  
pp. 218-226 ◽  
Author(s):  
Nilesh Kumar Rai ◽  
Shiwani Pandhija ◽  
Shikha Rai ◽  
Ashok Kumar Pathak* ◽  
A. K. Rai

Sign in / Sign up

Export Citation Format

Share Document