scholarly journals Ethanol Extract of Chinese Propolis Facilitates Functional Recovery of Locomotor Activity after Spinal Cord Injury

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Masaki Kasai ◽  
Hidefumi Fukumitsu ◽  
Hitomi Soumiya ◽  
Shoei Furukawa

An ethanol extract of Chinese propolis (EECP) was given intraperitoneally to rats suffering from hemitransection of half of their spinal cord (left side) at the level of the 10th thoracic vertebra to examine the effects of the EECP on the functional recovery of locomotor activity and expression of mRNAs of inducible nitric oxide (NO) synthase (iNOS) and neurotrophic factors in the injury site. Daily administration of EECP after the spinal cord injury ameliorated the locomotor function, which effect was accompanied by a reduced lesion size. Furthermore, the EECP suppressed iNOS gene expression, thus reducing NO generation, and also increased the expression level of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the lesion site, suggesting that the EECP reduced the inflammatory and apoptotic circumstances through attenuation of iNOS mRNA expression and facilitation of mRNA expression of neurotrophins in the injured spinal cord. These results suggest that Chinese propolis may become a promising tool for wide use in the nervous system for reducing the secondary neuronal damage following primary physical injury.

2017 ◽  
Vol 117 (6) ◽  
pp. 2282-2291 ◽  
Author(s):  
Wei Zhou ◽  
Tongzhou Yuan ◽  
Youshui Gao ◽  
Peipei Yin ◽  
Wei Liu ◽  
...  

Excessive inflammation including IL-1β-initiated signaling is among the earlies reactions that can cause neuronal damage following spinal cord injury (SCI). It has been suggested that microRNAs may participate in stem cell repair to facilitate functional recovery following SCI. In this study we have shown that in cultured human neural stem cells (hNSC), IL-1β reduced the expression of both KIF3B (kinesin family member 3B) and NOSIP (nitric oxide synthase-interacting protein), two key modulators for restricting inflammation and promoting neuronal regeneration. The induction of microRNA-372 (miR-372) by IL-1β is specifically responsible for the inhibition of KIF3B and NOSIP. The 3′-untranslated regions (UTRs) of both KIF3B and NOSIP contain targeting sequences to miR-372 that directly inhibit their expression. Moreover, we found that the expression of miR-372 was stimulated in hNSC by IL-1β through an NF-κB binding site at its promoter region. Finally, stable overexpression of miR-372 inhibitor in hNSC rescued the IL-1β-induced impairment as shown by significant improvements in tissue water content, myeloperoxidase activity, and behavioral assessments in SCI rats. These findings suggest a critical role of miR-372 in inflammatory signaling and pinpoint a novel target for the treatment of acute SCI. NEW & NOTEWORTHY Our data demonstrate that IL-1β can impair the functional recovery of neural stem cell transplant therapy for spinal cord injury (SCI) treatment in rats. This effect is dependent on microRNA-372 (miR-372)-dependent gene repression of KIF3B and NOSIP. Therefore, specific knockdown of miR-372 may provide benefits for SCI treatments.


2020 ◽  
Vol 33 (5) ◽  
pp. 692-704
Author(s):  
Yona Goldshmit ◽  
Evgeni Banyas ◽  
Nicole Bens ◽  
Alex Yakovchuk ◽  
Angela Ruban

OBJECTIVEExcitotoxicity due to neuronal damage and glutamate release is one of the first events that leads to the progression of neuronal degeneration and functional impairment. This study is based on a paradigm shift in the therapeutic approach for treating spinal cord injury (SCI). The authors tested a new treatment targeting removal of CNS glutamate into the blood circulation by injection of the blood glutamate scavengers (BGSs) recombinant enzyme glutamate-oxaloacetate transaminase (rGOT1) and its cosubstrate oxaloacetic acid (OxAc). Their primary objective was to investigate whether BGS treatment, followed by treadmill exercises in mice with SCI, could attenuate excitotoxicity, inflammation, scarring, and axonal degeneration and, at a later time point, improve functional recovery.METHODSA pharmacokinetic experiment was done in C57BL/6 naive mice to verify rGOT1/OxAc blood activity and to characterize the time curve of glutamate reduction in the blood up to 24 hours. The reduction of glutamate in CSF after BGS administration in mice with SCI was confirmed by high-performance liquid chromatography. Next, SCI (left hemisection) was induced in the mice, and the mice were randomly assigned to one of the following groups at 1 hour postinjury: control (underwent SCI and received PBS), treadmill exercises, rGOT1/OxAc treatment, or rGOT1/OxAc treatment followed by treadmill exercises. Treatment started 1 hour postinjury with an injection of rGOT1/OxAc and continued for 5 consecutive days. Starting 1 week after SCI, the exercises and the combined treatment groups recommenced the treadmill exercise regimen 5 days a week for 3 months. Locomotor function was assessed for 3 months using the horizontal grid walking test and CatWalk. Axonal anterograde and wallerian degenerations were evaluated using tetramethylrhodamine dextran. Tissue sections were immunofluorescently stained for Iba1, GFAP, GAP-43, synaptophysin, and NeuN.RESULTSBGS treatment decreased the CSF glutamate level up to 50%, reduced axonal wallerian degeneration, and increased axonal survival and GAP-43 expression in neuronal cells. Combined treatment reduced inflammation, scarring, and lesion size. Additionally, the combination of BGS treatment and exercises increased synapses around motor neurons and enhanced axonal regeneration through the lesion site. This resulted in motor function improvement 3 months post-SCI.CONCLUSIONSAs shown by biochemical, immunohistochemical, and functional analysis, BGSs exhibit a substantial neuroprotective effect by reducing excitotoxicity and secondary damage after SCI. Furthermore, in combination with exercises, they reduced axonal degeneration and scarring and resulted in improved functional recovery.


2020 ◽  
Vol 11 ◽  
Author(s):  
Roxana Rodríguez-Barrera ◽  
Adrián Flores-Romero ◽  
Vinnitsa Buzoianu-Anguiano ◽  
Elisa Garcia ◽  
Karla Soria-Zavala ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 143
Author(s):  
Ganchimeg Davaa ◽  
Jin Young Hong ◽  
Tae Uk Kim ◽  
Seong Jae Lee ◽  
Seo Young Kim ◽  
...  

Exercise training is a traditional method to maximize remaining function in patients with spinal cord injury (SCI), but the exact mechanism by which exercise promotes recovery after SCI has not been identified; whether exercise truly has a beneficial effect on SCI also remains unclear. Previously, we showed that epigenetic changes in the brain motor cortex occur after SCI and that a treatment leading to epigenetic modulation effectively promotes functional recovery after SCI. We aimed to determine how exercise induces functional improvement in rats subjected to SCI and whether epigenetic changes are engaged in the effects of exercise. A spinal cord contusion model was established in rats, which were then subjected to treadmill exercise for 12 weeks. We found that the size of the lesion cavity and the number of macrophages were decreased more in the exercise group than in the control group after 12 weeks of injury. Immunofluorescence and DNA dot blot analysis revealed that levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in the brain motor cortex were increased after exercise. Accordingly, the expression of ten-eleven translocation (Tet) family members (Tet1, Tet2, and Tet3) in the brain motor cortex also elevated. However, no macrophage polarization was induced by exercise. Locomotor function, including Basso, Beattie, and Bresnahan (BBB) and ladder scores, also improved in the exercise group compared to the control group. We concluded that treadmill exercise facilitates functional recovery in rats with SCI, and mechanistically epigenetic changes in the brain motor cortex may contribute to exercise-induced improvements.


Sign in / Sign up

Export Citation Format

Share Document