scholarly journals Modelling of Spacecraft Dynamics at Deployment of Large Elastic Structure

2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
V. S. Khoroshilov ◽  
A. E. Zakrzhevskii

In this paper, a new approach to the modelling of the deployment dynamics of a flexible multi-body system with the time dependent configurations is demonstrated in the frame of the study the dynamics of a spacecraft with the gyro-gravitational system of stabilization. Primarily the gravitational stabilizer that is made as a pantograph structure is in a compact form. The deployment of a flexible pantograph structure is performed after placing the spacecraft into orbit and completion of the preliminary damping by a special jet-propelled system, and after uncaging the gyros. After its deployment, the pantograph turns into an elongated structure that serves as a gravitational stabilizer and carrier of solar batteries. The objective of the study is the creation of the generalized mathematical model and the conducting of the computational modelling of the spacecraft dynamics. The equations of motion are derived with the use of the Eulerian-LaGrangian formalism and symbolic computing. Numerical simulations of the typical operational mode of the system are conducted taking into account various control profiles for the deployment. Numerical results indicate that the system used for attitude stabilization ensures the shape of the deployed design and prescribed accuracy of the orientation.

Author(s):  
V S Khoroshilov ◽  
A E Zakrzhevskii

This article deals with the study of the dynamics of the spacecraft with the gyro-gravitational system of stabilization. The deployment of a flexible ring antenna is performed after placing the spacecraft into orbit and completion of the preliminary damping by a special jet-propelled system, and after uncaging the gyros. Primarily, the antenna is a pre-stressed tape wound on a special drum. When the drum starts deploying the tape, it takes the shape of an elastic ring of variable diameter. The objective of the study is the mechanical and computational modelling of the spacecraft dynamics. The equations of motion are derived with the use of the Eulerian–Lagrangian formalizm. Numerical simulations of the operational mode of the system are conducted. Numerical results indicate that the system used for attitude stabilization ensures the shape of the deployed design and prescribed accuracy of the orientation. Simulation results are presented for the spacecraft model to show the effectiveness of the spacecraft and deployment process stabilization.


1986 ◽  
Vol 108 (4) ◽  
pp. 322-329 ◽  
Author(s):  
M. J. Richard ◽  
R. Anderson ◽  
G. C. Andrews

This paper describes the vector-network approach which is a comprehensive mathematical model for the systematic formulation of the nonlinear equations of motion of dynamic three-dimensional constrained multi-body systems. The entire procedure is a basic application of concepts of graph theory in which laws of vector dynamics have been combined. The main concepts of the method have been explained in previous publications but the work described herein is an appreciable extension of this relatively new approach. The method casts simultaneously the three-dimensional inertia equations associated with each rigid body and the geometrical expressions corresponding to the kinematic restrictions into a symmetrical format yielding the differential equations governing the motion of the system. The algorithm is eminently well suited for the computer-aided simulation of arbitrary interconnected rigid bodies; it serves as the basis for a “self-formulating” computer program which can simulate the response of a dynamic system, given only the system description.


1979 ◽  
Vol 81 ◽  
pp. 69-72 ◽  
Author(s):  
Manabu Yuasa ◽  
Gen'ichiro Hori

A new approach to the planetary theory is examined under the following procedure: 1) we use a canonical perturbation method based on the averaging principle; 2) we adopt Charlier's canonical relative coordinates fixed to the Sun, and the equations of motion of planets can be written in the canonical form; 3) we adopt some devices concerning the development of the disturbing function. Our development can be applied formally in the case of nearly intersecting orbits as the Neptune-Pluto system. Procedure 1) has been adopted by Message (1976).


2018 ◽  
Vol 18 (02) ◽  
pp. 1850017 ◽  
Author(s):  
Iwona Adamiec-Wójcik ◽  
Łukasz Drąg ◽  
Stanisław Wojciech

The static and dynamic analysis of slender systems, which in this paper comprise lines and flexible links of manipulators, requires large deformations to be taken into consideration. This paper presents a modification of the rigid finite element method which enables modeling of such systems to include bending, torsional and longitudinal flexibility. In the formulation used, the elements into which the link is divided have seven DOFs. These describe the position of a chosen point, the extension of the element, and its orientation by means of the Euler angles Z[Formula: see text]Y[Formula: see text]X[Formula: see text]. Elements are connected by means of geometrical constraint equations. A compact algorithm for formulating and integrating the equations of motion is given. Models and programs are verified by comparing the results to those obtained by analytical solution and those from the finite element method. Finally, they are used to solve a benchmark problem encountered in nonlinear dynamic analysis of multibody systems.


Author(s):  
Torstein R. Storaas ◽  
Kasper Virkesdal ◽  
Gitle S. Brekke ◽  
Thorstein Rykkje ◽  
Thomas Impelluso

Abstract Norwegian industries are constantly assessing new technologies and methods for more efficient and safer maintenance in the aqua cultural, renewable energy, and oil and gas industries. These Norwegian offshore industries share a common challenge: to install new equipment and transport personnel in a safe and controllable way between ships, farms and platforms. This paper deploys the Moving Frame Method (MFM) to analyze ship stability moderated by a dual gyroscopic inertial device. The MFM describes the dynamics of the system using modern mathematics. Lie group theory and Cartan’s moving frames are the foundation of this new approach to engineering dynamics. This, together with a restriction on the variation of the angular velocity used in Hamilton’s principle, enables an effective way of extracting the equations of motion. This project extends previous work. It accounts for the dual effect of two inertial disk devices, it accounts for the prescribed spin of the disks. It separates out the prescribed variables. This work displays the results in 3D on cell phones. It represents a prelude to testing in a wave tank.


Author(s):  
L. Beji ◽  
M. Pascal ◽  
P. Joli

Abstract In this paper, an architecture of a six degrees of freedom (dof) parallel robot and three limbs is described. The robot is called Space Manipulator (SM). In a first step, the inverse kinematic problem for the robot is solved in closed form solution. Further, we need to inverse only a 3 × 3 passive jacobian matrix to solve the direct kinematic problem. In a second step, the dynamic equations are derived by using the Lagrangian formalism where the coordinates are the passive and active joint coordinates. Based on geometrical properties of the robot, the equations of motion are derived in terms of only 9 coordinates related by 3 kinematic constraints. The computational cost of the obtained dynamic model is reduced by using a minimum set of base inertial parameters.


Author(s):  
G. Biakeu ◽  
F. Thouverez ◽  
J. P. Laine ◽  
L. Jezequel

Abstract The goal of this paper is to present a flexible multi-body formulation involving large displacements. This method is based on a separate discretisation of the kinetic and the internal energies. To introduce flexibility, we discretize the structure in elements (of two nodes): on each element of the beam discretisation, the local frame is defined using Euler’s angles. A finite element formulation is then applied to describe the evolution of these angles along the beam neutral fibre. For the kinetic energy, each element is cut into two rigid bars whose characteristics are given by a first order Taylor factorisation on the general kinetic energy expression. These bars are linked by a nonlinear relation. We obtain the equations of motion by applying the Lagrange’s equations to the system. These equations are solved using the Newmark method in dynamic and a Newton-Raphson technique while looking for a static solution. The method is then applied to very classic problems such as the curved beam problem proposed by authors such as Simo [6, 9], Lee [4] or the rotational rod presented by Avello [1] and Simo [7, 8] etc...


Author(s):  
Thorstein R. Rykkje ◽  
Eystein Gulbrandsen ◽  
Andreas Fosså Hettervik ◽  
Morten Kvalvik ◽  
Daniel Gangstad ◽  
...  

Abstract This paper extends research into flexible robotics through a collaborative, interdisciplinary senior design project. This paper deploys the Moving Frame Method (MFM) to analyze the motion of a relatively high multi-link system, driven by internal servo engines. The MFM describes the dynamics of the system and enables the construction of a general algorithm for the equations of motion. Lie group theory and Cartan’s moving frames are the foundation of this new approach to engineering dynamics. This, together with a restriction on the variation of the angular velocity used in Hamilton’s principle, enables an effective way of extracting the equations of motion. The result is a dynamic 3D analytical model for the motion of a snake-like robotic system, that can take the physical sizes of the system and return the dynamic behavior. Furthermore, this project builds a snake-like robot driven by internal servo engines. The multi-linked robot will have a servo in each joint, enabling a three-dimensional movement. Finally, a test is performed to compare if the theory and the measurable real-time results match.


Author(s):  
Farhad Aghili

A gauge-invariant formulation for deriving the dynamic equations of constrained multi-body systems (MBS) in terms of (reduced) quasi–velocities is presented. This formulation does not require any weighting matrix to deal with the gauge-invariance problem when both translational and rotational components are involved in the generalized coordinates or in the constraint equations. Moreover, in this formulation the equations of motion are decoupled from those of constrained force and each system has its own independent input. This allows the possibility to develop a simple force control action that is totally independent from the motion control action facilitating a hybrid force/motion control. Tracking force/motion control of constrained multi-body systems based on a combination of feedbacks on the vectors of the quasi–velocities and the configuration variables are presented.


Sign in / Sign up

Export Citation Format

Share Document