scholarly journals A Novel Dual-Band MIMO Antenna with Lower Correlation Coefficient

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jian Zhang ◽  
Jun OuYang ◽  
Kai Zhi Zhang ◽  
Feng Yang

This paper demonstrates a novel dual-band operated MIMO antenna which consisted of planar monopole (main antenna) and 3D slot element (auxiliary antenna). The main antenna is printed on a 1.6 mm thick FR4 board, while the auxiliary antenna is fabricated with gold-coated copper. A lumped impedance network is applied to enhance matching effect at port1. From simulations by commercial software, it can be found that the proposed antenna is able to cover GSM800, GSM900 (lower band), and LTE/ WiMAX/WLAN (higher band) quite well. Good agreements between simulations and measurements are obtained. Corresponding measured results, antenna efficiency, peak gain, and radiation patterns, are presented at the same time. By equipping a passive decoupling element, the coupling power on the ground is radiated into free space, and great enhancement of isolation between antenna elements, especially for lower band, is achieved.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
M. Samsuzzaman ◽  
T. Islam ◽  
N. H. Abd Rahman ◽  
M. R. I. Faruque ◽  
J. S. Mandeep

A coplanar waveguide (CPW) fed printing and wide circular slotted, dual band antenna for Wi-Fi/WiMAX applications are presented. The antenna mainly encompasses a ground with a wide circular slot in the centre, a rectangular feeding strip, and two pairs of symmetric planar invertedL(SPIL) strips connecting with the slotted ground. The tuning effects of the rectangular patch, ground size, and SPIL strips to the resonance and matching condition are examined by HFSS and the prototype is fabricated and measured. The simulation and experimental results show that the antenna has an impedance bandwidth with −10 dB reflection coefficients 600 MHz (3.26–3.86 GHz, lower band) and 1040 MHz (5.02–6.26 GHz, upper band), which can cover both the Wi-Fi 5.2/5.5/5.8 GHz and WiMAX 3.3/3.5/3.7/5.8 GHz bands. Moreover, a stable omnidirectional radiation pattern and average peak gain for lower band 3.23 dB and upper band 5.93 dB have been achieved, respectively.


2021 ◽  
Vol 36 (1) ◽  
pp. 55-60
Author(s):  
Qin Li ◽  
Yufa Sun ◽  
Hongyu Fang

In order to improve the channel capacity of communication equipment and reduce the size of antenna, an asymmetric coplanar strip (ACS) fed four-element UWB MIMO antenna with dual band notches is proposed in this paper. The antenna has a simple structure and a compact size of 37×37 mm². The antenna consists of four modifled staircase-shaped radiation elements and four floor on the same side. The antenna elements are placed vertically without additional decoupling structure, and the isolation less than -15 dB in the working bandwidth of 2.9-10.6 GHz can be obtained by using polarization diversity. In addition, the antenna has the notched characteristic of WiMAX and WLAN band. The antenna has good gain and low envelop correlation coefficient (ECC), and the simulation results agree with the measured results, which indicates that the antenna is suitable for UWB system.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012010
Author(s):  
E A Ischenko ◽  
Yu G Pasternak ◽  
V A Pendyurin ◽  
S M Fedorov

Abstract The article discusses a planar patch antenna with a metamaterial integrated into the structure, which allows the antenna to function in the upper Wi-Fi 5, 6 frequency range and the Wi-Fi 6E range. For the study, we built graphs of S-parameters, radiation patterns; on the basis of the resulting structure, we formed a MIMO antenna array for which we determined the main characteristics - the envelope correlation coefficient and the multiplexing efficiency


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Lila Mouffok ◽  
Anne Claire Lepage ◽  
Julien Sarrazin ◽  
Xavier Begaud

A system of two dual-band dual-polarized antennas is proposed. It operates in two bands, 700 to 862 MHz and 2.5 to 2.69 GHz, thereby making it suitable for LTE applications. The design is composed of two compact orthogonal monopoles printed close to each other to perform diversity in mobile terminals such as tablets or laptops. For each band, two orthogonal polarizations are available and an isolation higher than 15 dB is achieved between the two monopoles spaced byλ0/10 (whereλ0the central wavelength in free space of the lower band). A good agreement is observed between simulated and experimental results. The antenna diversity capability is highlighted with the calculation of envelope correlation and mean effective gain for several antennas' positions in different environment scenarios.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Woo-Su Kim ◽  
Sunho Choi ◽  
Gye-Taek Jeong

This paper presents a low-profile multiband antenna suitable for wireless local area networks (WLANs), using a chip inductor and tuning stub for broadband impedance matching. The proposed antenna is compact12×10×1 mm3and covers three bands: 2.4-GHz (2.400–2.484 GHz), 5.2-GHz (5.150–5.350 GHz), and 5.8-GHz (5.725–5.825 GHz). The measured 10-dB bandwidths are 12.0% (2.28–2.57 GHz) in the lower band for 2.4-GHz WLANs and 39.1% (4.81–7.15 GHz) in the upper band for 5 GHz-WLANs. The measured peak gain of the antenna is between 2.7 and 4.39 dBi and the radiation patterns are omnidirectional.


2014 ◽  
Vol 3 (1) ◽  
pp. 61 ◽  
Author(s):  
M. A. Kenari ◽  
M. N. Moghadasi

In this paper, a novel ultra-wideband (UWB) miniature antenna based on the composite right-left handed transmission line (CRLH-TL) structure with enhancement gain is proposed and investigated. With CRLH metamaterial (MTM) technology embedded, the proposed UWB and miniature antenna is presented with best in bandwidth, size, efficiency and radiation patterns. To realize characteristics of the antenna, the printed -shaped gaps into the rectangular radiation patches are used. This antenna is constructed of the two unit cells, also presented antenna is designed from 2.25 GHz to 4.7 GHz which corresponding to 70.5% bandwidth. The overall size of the presented antenna is 10.8mm×6.9mm×0.8mm or 0.09λ0× 0.05λ0 × 0.006λ0 at the operating frequency f = 2.5 GHz (where λ0 is free space wavelength). The radiation peak gain and the maximum efficiency which occurs at 4.6 GHz, are 3.96dBi and 63.6%, respectively.


Author(s):  
Subuh Pramono ◽  
Muhammad Hamka Ibrahim ◽  
Josaphat Tetuko Sri Sumantyo
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document