scholarly journals Radio Frequency Numerical Simulation Techniques Based on Multirate Runge-Kutta Schemes

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Jorge F. Oliveira ◽  
José C. Pedro

Electronic circuit simulation, especially for radio frequency (RF) and microwave telecommunications, is being challenged by increasingly complex applications presenting signals of very different nature and evolving on widely separated time scales. In this paper, we will briefly review some recently developed ways to address these challenges, by describing some advanced numerical simulation techniques based on multirate Runge-Kutta schemes, which operate in the one-dimensional time and also within multidimensional frameworks.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jorge F. Oliveira ◽  
José C. Pedro

This paper reviews some of the promising doors that functional analysis techniques have recently opened in the field of electronic circuit simulation. Because of the modulated nature of radio frequency (RF) signals, the corresponding electronic circuits seem to operate in a slow time scale for the aperiodic information and another, much faster, time scale for the periodic carrier. This apparent multirate behavior can be appropriately described using partial differential equations (PDEs) within a bivariate framework, which can be solved in an efficient way using hybrid time-frequency techniques. With these techniques, the aperiodic information dimension is treated in the discrete time domain, while the periodic carrier dimension is processed in the frequency domain, in which the solution is evaluated within a space of harmonically related sinusoidal functions. The objective of this paper is thus to provide a general overview on the most important hybrid time-frequency techniques, as the ones found in commercial tools or the ones recently published in the literature.


2018 ◽  
Vol 7 (3) ◽  
pp. 1931 ◽  
Author(s):  
Sivaperumal Sampath ◽  
Sundarapandian Vaidyanathan ◽  
Aceng Sambas ◽  
Mohamad Afendee ◽  
Mustafa Mamat ◽  
...  

This paper reports the finding a new four-scroll chaotic system with four nonlinearities. The proposed system is a new addition to existing multi-scroll chaotic systems in the literature. Lyapunov exponents of the new chaotic system are studied for verifying chaos properties and phase portraits of the new system via MATLAB are unveiled. As the new four-scroll chaotic system is shown to have three unstable equilibrium points, it has a self-excited chaotic attractor. An electronic circuit simulation of the new four-scroll chaotic system is shown using MultiSIM to check the feasibility of the four-scroll chaotic model.


2004 ◽  
Author(s):  
You-Seop Lee ◽  
Min Soo Kim ◽  
Seung Joo Shin ◽  
Suho Shin ◽  
Keon Kuk ◽  
...  

This paper presents a lumped model to predict crosstalk characteristics of thermally driven inkjet print heads. The model is based on a heat conduction equation, an empirical pressure-temperature equation, and a nonlinear hydraulic flow-pressure equation. It has been simulated through the construction of a Kirchhoffian R-L-C network, and subsequently analyzed using SIMULINK and an electronic circuit simulation tool. Using the lumped R-C model, heating characteristics of the head are predicted to be in agreement with IR temperature measurements. The inter-channel crosstalk is simulated using the lumped R-L network. The values of viscous flow resistance, R and flow inertance, L of the inter-channels are adjusted to accord with the 3-D numerical simulation results of three adjacent jets. The crosstalk behaviors of a back shooter head as well as a top shooter head have been investigated. Predictions of the proposed lumped model of the meniscus oscillations are consistent with numerical simulations. Comparison of the lumped model with experimental results identifies that abnormal two-drop ejection phenomena are related to the increased meniscus oscillations because of the more severe crosstalk effects at higher printing speeds. Our model can be used as a design tool for a better design of thermal inkjet print heads to minimize crosstalk effects.


2006 ◽  
Vol 505-507 ◽  
pp. 493-498
Author(s):  
Tian Syung Lan ◽  
Kuei Shu Hsu ◽  
Tung Te Chu ◽  
Long Jyi Yeh ◽  
Ming Guo Her

Dynamic MRR (material removal rate) modeling is constructed and optimum solution through Calculus of Variations in maximize the machining profit of an individual cutting tool under fixed tool life is introduced. The mathematical model is formulated by reverse experiments on an ECOCA PC-3807 CNC lathe, and the electronic circuit is developed using linear regression technique for virtual machining. The inaccuracy between actual and simulated voltage is assured to be within 2%. By introducing a real-world CNC (computerized numerical control) machining case from AirTAC into the virtual system, the simulated cutting forces are shown to promise the feasible applicability of the optimum MRR control. Additionally, the implementation of dynamic solution is experimentally performed on a proposed digital PC-based lathe system. The surface roughness of all machined work-pieces is found to not only stabilize as the tool consumed, but also accomplish the recognized standard for finish turning.


Sign in / Sign up

Export Citation Format

Share Document