scholarly journals Quadrupole Excitation in Tunnel Splitting Oscillation in Nanoparticle

2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Yousef Yousefi ◽  
Khikmat Kh. Muminov

We analyze the interference between tunneling paths that occur for a spin system with special Hamiltonian both for dipole and quadrupole excitations. Using an instanton approach, we find that as the strength of the second-order transverse anisotropy is increased, the tunnel splitting for both excitations is modulated, with zeros occurring periodically and the number of quenching points for quadrupole excitation decreasing. This effect results from the interference of four tunneling paths connecting easy-axis spin orientations and occurs in the absence of any magnetic field.

2002 ◽  
Vol 16 (15n16) ◽  
pp. 555-567
Author(s):  
CHANG-SOO PARK

We have studied the escape rate of spin tunneling in a molecular magnet with a fourfold easy axis, such as Mn 12-acetate, in the presence of an external field applied perpendicular to the easy axis. Both perturbation theory and numerical diagonalization have been used to investigate the type of quantum-classical crossover and the crossover temperature T c . We have observed that T c ~ 1.2 K which agrees with experimental results,9 and the first-order region increases due to the fourth-order transverse anisotropy. More interestingly, when the field is applied along the hard axis, first- and second-order regions alternate as the field increases.


2007 ◽  
Vol 310 (2) ◽  
pp. 1352-1354 ◽  
Author(s):  
F. Yamada ◽  
T. Ono ◽  
M. Fujisawa ◽  
H. Tanaka ◽  
T. Sakakibara

2021 ◽  
Vol 7 (5) ◽  
pp. 60
Author(s):  
Luis M. Moreno-Ramírez ◽  
Victorino Franco

The applicability of magnetocaloric materials is limited by irreversibility. In this work, we evaluate the reversible magnetocaloric response associated with magnetoelastic transitions in the framework of the Bean-Rodbell model. This model allows the description of both second- and first-order magnetoelastic transitions by the modification of the η parameter (η<1 for second-order and η>1 for first-order ones). The response is quantified via the Temperature-averaged Entropy Change (TEC), which has been shown to be an easy and effective figure of merit for magnetocaloric materials. A strong magnetic field dependence of TEC is found for first-order transitions, having a significant increase when the magnetic field is large enough to overcome the thermal hysteresis of the material observed at zero field. This field value, as well as the magnetic field evolution of the transition temperature, strongly depend on the atomic magnetic moment of the material. For a moderate magnetic field change of 2 T, first-order transitions with η≈1.3−1.8 have better TEC than those corresponding to stronger first-order transitions and even second-order ones.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 279
Author(s):  
Tomoo Nakai

This study deals a phenomenon of magnetic domain transition for the stepped magneto-impedance element. Our previous research shows that an element with 70° inclined easy axis has a typical characteristic of the domain transition, and the transition can be controlled by the normal magnetic field. In this paper, we apply this phenomenon and controlling method to the line arrangement adjacent to many body elements, in which mutual magnetic interaction exists. The result shows that the hidden inclined Landau–Lifshitz domain appears by applying a distributed normal field the same as an individual element.


1970 ◽  
Vol 25 (5) ◽  
pp. 608-611
Author(s):  
P. Zimmermann

Observing the change of the Hanle effect under the influence of a homogeneous electric field E the Stark effect of the (5p1/25d5/2)j=2-state in Sn I was studied. Due to the tensorial part β Jz2E2 in the Hamiltonian of the second order Stark effect the signal of the zero field crossing (M ∓ 2, M′ = 0 β ≷ 0 ) is shifted to the magnetic field H with gJμBH=2 | β | E2. From these shifts for different electric field strengths the value of the Stark parameter|β| = 0.21(2) MHz/(kV/cm)2 · gJ/1.13was deduced. A theoretical value of ß using Coulomb wave functions is discussed.


Sign in / Sign up

Export Citation Format

Share Document