scholarly journals Bifunctional Silica-Coated Superparamagnetic FePt Nanoparticles for Fluorescence/MR Dual Imaging

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Syu-Ming Lai ◽  
Tsiao-Yu Tsai ◽  
Chia-Yen Hsu ◽  
Jai-Lin Tsai ◽  
Ming-Yuan Liao ◽  
...  

Recently, superparamagnetic chemically disordered face-centered cubic (fcc) FePt nanoparticles have been demonstrated as superior negative contrast agents for magnetic resonance imaging (MRI). However, their low intracellular labeling efficiency has limited the potential usage and the nanotoxicity of the particles requires attention. We have developed fluorescein isothiocyanate-incorporated silica-coated FePt (FePt@SiO2-FITC) nanoparticles that exhibited not only a significantT1andT2MR contrast abilities but also a fluorescent property without significant cytotoxicities. These results suggest that silica-coated superparamagnetic FePt nanoparticles are potential nanodevices for the combination of fluorescence and MRI contrast used for cancer diagnosis.

Author(s):  
Yilin He ◽  
Yi Cao ◽  
Zheng Mao ◽  
Youxin Zhou ◽  
Ye Zhang ◽  
...  

Magnetic resonance imaging (MRI) contrast agents (CAs) have drawn increasingly attention in the cancer diagnosis. However, since the signal they generate is always “on” and may bring disturbed background signal...


2009 ◽  
Vol 13 (07) ◽  
pp. 823-831 ◽  
Author(s):  
Oyunbileg Galindev ◽  
Monkhoobor Dalantai ◽  
Woong Shick Ahn ◽  
Young Key Shim

One of the ultimate goals of contrast agent (CA) research in magnetic resonance imaging (MRI) is to identify tumor-seeking materials. Thus, cancer diagnosis by Photodynamic Therapy (PDT) using photosensitizer will be one of the best tools for cancer research. By linking paramagnetic gadolinium [ Gd(III) ] ion to tumor selective chlorin-based photosensitizers, the cancer cell can be easily detected with high sensitivity and cured by appropriate laser irradiation simultaneously. The synthesis of monomer and dimer chlorin derivatives, such as pyropheophorbide-a and purpurin systems, conjugated with Gd(III) diethylenetriaminepentaacetic acid (DTPA) by means of diethylene-triaminepentaacetic dianhydride (caDTPA) for the evaluation as CAs for MRI was described in the present study.


Author(s):  
Anton Popov ◽  
Maxim Artemovich Abakumov ◽  
Irina Savintseva ◽  
Artem Ermakov ◽  
Nelly Popova ◽  
...  

Gd-based complexes are widely used as magnetic resonance imaging (MRI) contrast agents. The safety of previously approved contrast agents is questionable and is being re-assessed. The main causes of concern...


2017 ◽  
Vol 8 (34) ◽  
pp. 5157-5166 ◽  
Author(s):  
A. V. Fuchs ◽  
A. P. Bapat ◽  
G. J. Cowin ◽  
K. J. Thurecht

A switchable polymeric 19F magnetic resonance imaging (MRI) contrast agent was synthesised whereby the transverse (T2) relaxation times increased as a therapeutic was released from a hyperbranched polymer (HBP) scaffold.


2013 ◽  
Vol 3 (1) ◽  
pp. 2 ◽  
Author(s):  
Vardan Gasparyan

The present paper considers prospects for application of various nanoparticles in biology and medicine. Here are presented data on preparation of gold and silver nanoparticles, and effects of shape of these nanoparticles on their optical properties. Application of these nanoparticles in diagnostics, for drug delivery and therapy, and preparation of magnetic nanoparticles from iron and cobalt salts are also discussed. Application of these nanoparticles as magnetic resonance imaging (MRI) contrast agents and as vehicles for drug delivery, and preparation of quantum dots and their application as prospective nanoparticles for multiplex analysis and for visualization of cellular processes will be tackled. Finally, prospects for new types of nanocomposites (metallic nano-shells) will be not overlooked.


Author(s):  
Jose V Manjon ◽  
Jose E Romero ◽  
Pierrick Coupé

Abstract In Magnetic Resonance Imaging (MRI), depending on the image acquisition settings, a large number of image types or contrasts can be generated showing complementary information of the same imaged subject. This multi-spectral information is highly beneficial since can improve MRI analysis tasks such as segmentation and registration, thanks to pattern ambiguity reduction. However, the acquisition of several contrasts is not always possible due to time limitations and patient comfort constraints. Contrast synthesis has emerged recently as an approximate solution to generate other image types different from those acquired originally. Most of the previously proposed methods for contrast synthesis are slice-based which result in intensity inconsistencies between neighbor slices when applied in 3D. We propose the use of a 3D convolutional neural network (CNN) capable of generating T2 and FLAIR images from a single anatomical T1 source volume. The proposed network is a 3D variant of the UNet that processes the whole volume at once breaking with the inconsistency in the resulting output volumes related to 2D slice or patch-based methods. Since working with a full volume at once has a huge memory demand we have introduced a spatial-to-depth and a reconstruction layer that allows working with the full volume but maintain the required network complexity to solve the problem. Our approach enhances the coherence in the synthesized volume while improving the accuracy thanks to the integrated three-dimensional context-awareness. Finally, the proposed method has been validated with a segmentation method, thus demonstrating its usefulness in a direct and relevant application.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 462 ◽  
Author(s):  
Karina Nava Andrade ◽  
Gregorio Guadalupe Carbajal Arízaga ◽  
José Antonio Rivera Mayorga

In this work, we explore the synthesis of layered double hydroxide (LDH) particles containing different molar ratios of Gd3+ and Dy3+ cations. A single crystalline phase was obtained for Zn2.0Al0.75Gd0.125Dy0.125-LDH and Zn2.0Al0.5Gd0.25Dy0.25-LDH, and their efficiency as contrast agents was evaluated by T1- and T2-weighted magnetic resonance imaging (MRI). Both GdDy-LDHs exhibited longitudinal relaxivity (r1) higher than a commercial reference. The highest contrast in the T1 mode was achieved with the Zn2.0Al0.75Gd0.125Dy0.125-LDH, which contained the lowest concentration of lanthanides; this efficiency is related to the lowest amount of carbonate anions complexing the lanthanide sites. On the contrary, the best contrast in the T2 mode was achieved with Zn2.0Al0.5Gd0.25Dy0.25-LDH. Zn2.0Al0.75Gd0.125Dy0.125-LDH and Zn2.0Al0.5Gd0.25Dy0.25-LDH presented r2/r1 ratios of 7.9 and 22.5, respectively, indicating that the inclusion of gadolinium and dysprosium into layered structures is a promising approach to the development of efficient bimodal (T1/T2) MRI contrast agents.


Sign in / Sign up

Export Citation Format

Share Document