scholarly journals Microstereolithography of Three-Dimensional Polymeric Springs for Vibration Energy Harvesting

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Evan Baker ◽  
Timothy Reissman ◽  
Fan Zhou ◽  
Chen Wang ◽  
Kevin Lynch ◽  
...  

The inefficiency in converting low frequency vibration (6~240 Hz) to electrical energy remains a key issue for miniaturized vibration energy harvesting devices. To address this subject, this paper reports on the novel, three-dimensional micro-fabrication of spring elements within such devices, in order to achieve resonances and maximum energy conversion within these common frequencies. The process, known as projection microstereolithography, is exploited to fabricate polymer-based springs direct from computer-aided designs using digital masks and ultraviolet-curable resins. Using this process, a micro-spring structure is fabricated consisting of a two-by-two array of three-dimensional, constant-pitch helical coils made from 1,6-hexanediol diacrylate. Integrating the spring structure into an electromagnetic device, with a magnetic load mass of 1.236 grams, the resonance is measured at 61 Hz, which is within 2% of the theoretical model. The device provides a maximum normalized power output of 9.14 μW/G (G=9.81 ms−2) and an open circuit normalized voltage output of 621 mV/G. To the best of the authors knowledge, notable features of this work include the lowest Young’s modulus (530 MPa), density (1.011 g/cm3), and “largest feature size” (3.4 mm) for a spring element in a vibration energy harvesting device with sub-100 Hz resonance.

2013 ◽  
Vol 558 ◽  
pp. 465-476
Author(s):  
Joshua E. McLeod ◽  
Scott D. Moss

This paper reports on the multiphysics modelling of a bi-axial vibration energy harvesting (VEH) approach, with experimental validation of the model predictions. The authors have developed a harvester able to generate voltage under bi-axial vibrations. The harvesting approach is based on a magnetoelectric (ME) transducer that is positioned between a fixed magnet and oscillating ball bearing, which steers a changing magnetic field through the transducer to generate a voltage. The transducer combines magnetostrictive and piezoelectric properties to convert magnetic potential into electrical energy. Analytical modelling of this phenomenon is difficult due to the highly coupled nature of this interaction, so Comsol multiphysics software is used to make predictions of output using the finite element method (FEM). A peak open-circuit harvester voltage of 39.4 V is predicted for a ball bearing oscillating with 4.5 mm amplitude, agreeing reasonably well with measured harvester voltage of approximately 35 V. The modelling is applied to a two-dimensional representation of the system, which is shown to be sufficient for a basic understanding of the highly coupled nature of interactions, and a basis for optimising the magnetoelectric vibration energy harvesting approach.


2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7364
Author(s):  
Yi-Ren Wang ◽  
Ming-Ching Chu

This research proposes an energy harvesting system that collects the downward airflow from a helicopter or a multi-axis unmanned rotary-wing aircraft and uses this wind force to drive the magnet to rotate, generating repulsive force, which causes the double elastic steel system to slap each other and vibrate periodically in order to generate more electricity than the traditional energy harvesting system. The design concept of the vibration mechanism in this study is to allow the elastic steel carrying the magnet to slap another elastic steel carrying the piezoelectric patch to form a set of double elastic steel vibration energy harvesting (DES VEH) systems. The theoretical DES VEH mechanism of this research is composed of a pair of cantilever beams, with magnets attached to the free end of one beam, and PZT attached to the other beam. This study analyzes the single beam system first. The MOMS method is applied to analyze the frequency response of this nonlinear system theoretically, then combines the piezoelectric patch and the magneto-electric coupling device with this nonlinear elastic beam to analyze the benefits of the system’s converted electrical energy. In the theoretical study of the DES VEH system, the slapping force between the two elastic beams was considered as a concentrated load on each of the beams. Furthermore, both SES and DES VEH systems are studied and correlated. Finally, the experimental data and theoretical results are compared to verify the feasibility and correctness of the theory. It is proven that this DES VEH system can not only obtain the electric energy from the traditional SES VEH system but also obtain the extra electric energy of the steel vibration subjected to the slapping force, which generates optimal power to the greatest extent.


Author(s):  
Auteliano A. Santos ◽  
Matheus V. Lopes ◽  
Vanessa Gonçalves ◽  
Jony J. Eckert ◽  
Thiago S. Martins

Long heavy-haul trains are now a reality, especially for ore transportation. In some railways, compositions of up to 330 wagons are in service, requiring several locomotives. Trains like that travel long distances, sometimes through cities or in uninhabited regions. They are driven by just one driver which must keep the whole train working safely on the track. The wagons don’t have any source of electrical energy to power sensors and to transmit their signals to the locomotive; nor wireless communication. In fact, in some of these railways, there is no internet along with the track out of the cities. One important indicator of the safety of the train is the force between the wagons during the trip, through the shunting. Using strain gauges to measure these forces is a possible solution and ultrasonic stress sensors (UST) is a suitable alternative. UST with Lcr waves requires a low amount of energy and can be employed in rusty and dirty places. However, they also need an energy source. Wind and solar solutions are not always adequate because, unfortunately, there are places where these components have economic value and they can be stolen. A possible source of energy to power the USTs could be the Vibration Energy Harvester (VEH). These simple and not expensive systems can be built in small packs, giving the energy to measure the forces and transmit the data to the locomotive or designated sites along the track. This work aims to evaluate the possibility of using VEH to power USTs to measure the forces between the wagons during the journey. Knowing that the oscillation in the shunting has a very low frequency, the work intent to optimize a multi-beam VEH to be able to capture the highest amount of energy possible, in a very small arrangement, using genetic algorithm. The result shows that VEH is an adequate alternative to power autonomous UST sensors.


Energy ◽  
2019 ◽  
Vol 180 ◽  
pp. 737-750 ◽  
Author(s):  
Yi Li ◽  
Shengxi Zhou ◽  
Zhichun Yang ◽  
Tong Guo ◽  
Xutao Mei

2018 ◽  
Vol 231 ◽  
pp. 600-614 ◽  
Author(s):  
Yipeng Wu ◽  
Jinhao Qiu ◽  
Shengpeng Zhou ◽  
Hongli Ji ◽  
Yang Chen ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Zhongsheng Chen ◽  
Jing He ◽  
Gang Wang

Embedded wireless sensing networks (WSNs) provide effective solutions for structural health monitoring (SHM), where how to provide long-term electric power is a bottle-neck problem. Piezoelectric vibration energy harvesting (PVEH) has been widely studied to realize self-powered WSNs due to piezoelectric effect. Structural vibrations are usually variable and exist in the form of elastic waves, so cantilever-like harvesters are not appropriate. In this paper, one kind of two-dimensional (2D) piezoelectric metamaterial plates with local resonators (PMP-LR) is investigated for structural vibration energy harvesting. In order to achieve low-frequency and broadband PVEH in SHM, it is highly necessary to study dynamic characteristics of PMP-LR, particularly bandgaps. Firstly, an analytical model is developed based on the Kirchhoff plate theory, and modal analysis is done by using the Rayleigh–Ritz method. Then, effects of geometric and material parameters on vibration bandgaps are analyzed by finite element-based simulations. In the end, experiments are carried out to validate the simulated results. The results demonstrate that the location of bandgaps can be easily adjusted by the design of local resonators. Therefore, the proposed method will provide an effective tool for optimizing local resonators in PMP-LR.


Sign in / Sign up

Export Citation Format

Share Document