scholarly journals Radiation Hardness of Flash Memory Fabricated in Deep-Submicron Technology

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Bojan Cavrić ◽  
Edin Dolićanin ◽  
Predrag Petronijević ◽  
Milić Pejović ◽  
Koviljka Stanković

This paper discusses the current problem of the electronic memory reliability in terms of the ionizing radiation effects. The topic is actual since the high degree of components' miniaturization integrated into the flash memory causes the extreme sensitivity of this memory type to the ionizing radiation effects. The effects of ionizing radiation may cause changes in stored data, or even the physical destruction of the components. At the end, the experimentally and numerically obtained effects of radiation on specific flash memories are shown and discussed. The results obtained by laboratory and numerical experiments showed good agreement with each other and with the theoretically expected results.

2014 ◽  
Vol 29 (2) ◽  
pp. 116-122 ◽  
Author(s):  
Marija Obrenovic ◽  
Djordje Lazarevic ◽  
Edin Dolicanin ◽  
Milos Vujisic

This paper deals with the flash memory reliability in terms of the ionizing radiation effects. In fact, the reliability of flash memory depends on physico-chemical restrictions of electrostatic nature due to the effects of ionizing radiation. The presented results are actual as a high degree of integrated components miniaturization affects the memory sensitivity, while the role of memories in the solar cells management system for space flights is increasing, so that the effects of ionizing radiation may cause changes in the stored data or the physical destruction of the flash memory components.


2019 ◽  
Vol 5 (03) ◽  
pp. 200-205
Author(s):  
Ashish Chaturvedi ◽  
Vinod Jain

The effects of radiation was first recognized in the use of X-rays for medical diagnosis. The rush in exploiting the medical benefits led fairly to the recognition of the risks and induced harm associated with it. In the early days, the most obvious harm resulting from high doses of radiation, such as radiation burns were observed and protection efforts were focused on their prevention, mainly for practitioners rather than patients. Although the issue was narrow, this lead to the origin of radiation protection as a discipline. Subsequently, it was gradually recognized that there were other, less obvious, harmful radiation effects such as radiation-induced cancer, for which there is a certain risk even at low doses of radiation. This risk cannot be completely prevented but can only be minimized. Therefore, the balancing of benefits from nuclear and radiation practices against radiation risk and efforts to reduce the residual risk has become a major feature of radiation protection. In this paper, we shall be looking at the precautionary measures for protecting life, properties and environment against ionizing radiation.


2008 ◽  
Author(s):  
Vincent Goiffon ◽  
Pierre Magnan ◽  
Frédéric Bernard ◽  
Guy Rolland ◽  
Olivier Saint-Pé ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
M. Gnaneswara Reddy

The effects of radiation and heat generation on steady thermal boundary layer flow induced by a linearly stretching sheet immersed in an incompressible micropolar fluid with constant surface temperature are investigated. Similarity transformation is employed to transform the governing partial differential equations into ordinary ones, which are then solved numerically using the Runge-Kutta fourth order along shooting method. Results for the local Nusselt number as well as the temperature profiles are presented for different values of the governing parameters. It is observed that the velocity increases with an increase in the material parameter. It is seen that the temperature profile is influenced considerably and increases when the value of heat generation parameter increases along the boundary layer. Also, the temperature distribution of the fluid increases with an increase in the radiation parameter. Comparisons with previously published work are performed and the results are found to be in very good agreement.


2016 ◽  
Vol 31 (1) ◽  
pp. 97-101
Author(s):  
Marija Obrenovic ◽  
Djordje Lazarevic ◽  
Srboljub Stankovic ◽  
Nenad Kartalovic

The paper examines the effects of radiation on the electrical characteristics of monocrystalline silicon and germanium. Samples of monocrystalline silicon and germanium are irradiated under controlled laboratory conditions in the field of neutron, X- and g-radiation. Change of the samples' specific resistance was measured dependent on the radiation dose with the type of radiation as a parameter. Next, the dependence of the samples resistance on temperature was recorded (in the impurities region and in intrinsic region) with the previously absorbed dose as a parameter. The results were statistically analyzed and explained on the basis of radiation effects in solids. The results are compared with those obtained by using Monte Carlo method. A good agreement was confirmed by the mentioned experimental investigation.


2014 ◽  
Vol 57 (6) ◽  
pp. 1-9 ◽  
Author(s):  
FengYing Qiao ◽  
LiYang Pan ◽  
Xiao Yu ◽  
HaoZhi Ma ◽  
Dong Wu ◽  
...  

2019 ◽  
Vol 66 (7) ◽  
pp. 1557-1565 ◽  
Author(s):  
Shuai Yao ◽  
Wu Lu ◽  
Xin Yu ◽  
Qi Guo ◽  
Chengfa He ◽  
...  

2018 ◽  
Vol 9 ◽  
pp. 1220-1227 ◽  
Author(s):  
Caspar Haverkamp ◽  
George Sarau ◽  
Mikhail N Polyakov ◽  
Ivo Utke ◽  
Marcos V Puydinger dos Santos ◽  
...  

A fluorine free copper precursor, Cu(tbaoac)2 with the chemical sum formula CuC16O6H26 is introduced for focused electron beam induced deposition (FEBID). FEBID with 15 keV and 7 nA results in deposits with an atomic composition of Cu:O:C of approximately 1:1:2. Transmission electron microscopy proved that pure copper nanocrystals with sizes of up to around 15 nm were dispersed inside the carbonaceous matrix. Raman investigations revealed a high degree of amorphization of the carbonaceous matrix and showed hints for partial copper oxidation taking place selectively on the surfaces of the deposits. Optical transmission/reflection measurements of deposited pads showed a dielectric behavior of the material in the optical spectral range. The general behavior of the permittivity could be described by applying the Maxwell–Garnett mixing model to amorphous carbon and copper. The dielectric function measured from deposited pads was used to simulate the optical response of tip arrays fabricated out of the same precursor and showed good agreement with measurements. This paves the way for future plasmonic applications with copper-FEBID.


2009 ◽  
Vol 52 (5) ◽  
pp. 1267-1278 ◽  
Author(s):  
Ana Paula Dionísio ◽  
Renata Takassugui Gomes ◽  
Marília Oetterer

Ionizing radiation has been widely used in industrial processes, especially in the sterilization of medicals, pharmaceuticals, cosmetic products, and in food processing. Similar to other techniques of food processing, irradiation can induce certain alterations that can modify both the chemical composition and the nutritional value of foods. These changes depend on the food composition, the irradiation dose and factors such as temperature and presence or absence of oxygen in the irradiating environment. The sensitivity of vitamins to radiation is unpredictable and food vitamin losses during the irradiation are often substantial. The aim of this study was to discuss retention or loss of vitamins in several food products submitted to an irradiation process.


Author(s):  
K. Loganovsky ◽  
◽  
P. Fedirko ◽  
K. Kuts ◽  
D. Marazziti ◽  
...  

Background.Exposure to ionizing radiation could affect the brain and eyes leading to cognitive and vision impairment, behavior disorders and performance decrement during professional irradiation at medical radiology, including interventional radiological procedures, long-term space flights, and radiation accidents. Objective. The objective was to analyze the current experimental, epidemiological, and clinical data on the radiation cerebro-ophthalmic effects. Materials and methods. In our analytical review peer-reviewed publications via the bibliographic and scientometric bases PubMed / MEDLINE, Scopus, Web of Science, and selected papers from the library catalog of NRCRM – the leading institution in the field of studying the medical effects of ionizing radiation – were used. Results. The probable radiation-induced cerebro-ophthalmic effects in human adults comprise radiation cataracts, radiation glaucoma, radiation-induced optic neuropathy, retinopathies, angiopathies as well as specific neurocognitive deficit in the various neuropsychiatric pathology including cerebrovascular pathology and neurodegenerative diseases. Specific attention is paid to the likely stochastic nature of many of those effects. Those prenatally and in childhood exposed are a particular target group with a higher risk for possible radiation effects and neurodegenerative diseases. Conclusions. The experimental, clinical, epidemiological, anatomical and pathophysiological rationale for visual system and central nervous system (CNS) radiosensitivity is given. The necessity for further international studies with adequate dosimetric support and the follow-up medical and biophysical monitoring of high radiation risk cohorts is justified. The first part of the study currently being published presents the results of the study of the effects of irradiation in the participants of emergency works at the Chornobyl Nuclear Power Plant (ChNPP). Key words: ionizing radiation, cerebroophthalmic effects, neurocognitive deficit, radiation accident, radiation cataracts, macular degeneration.


Sign in / Sign up

Export Citation Format

Share Document