scholarly journals Deconstructing Mitochondrial Dysfunction in Alzheimer Disease

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Vega García-Escudero ◽  
Patricia Martín-Maestro ◽  
George Perry ◽  
Jesús Avila

There is mounting evidence showing that mitochondrial damage plays an important role in Alzheimer disease. Increased oxygen species generation and deficient mitochondrial dynamic balance have been suggested to be the reason as well as the consequence of Alzheimer-related pathology. Mitochondrial damage has been related to amyloid-beta or tau pathology or to the presence of specific presenilin-1 mutations. The contribution of these factors to mitochondrial dysfunction is reviewed in this paper. Due to the relevance of mitochondrial alterations in Alzheimer disease, recent works have suggested the therapeutic potential of mitochondrial-targeted antioxidant. On the other hand, autophagy has been demonstrated to play a fundamental role in Alzheimer-related protein stress, and increasing data shows that this pathway is altered in the disease. Moreover, mitochondrial alterations have been related to an insufficient clearance of dysfunctional mitochondria by autophagy. Consequently, different approaches for the removal of damaged mitochondria or to decrease the related oxidative stress in Alzheimer disease have been described. To understand the role of mitochondrial function in Alzheimer disease it is necessary to generate human cellular models which involve living neurons. We have summarized the novel protocols for the generation of neurons by reprogramming or direct transdifferentiation, which offer useful tools to achieve this result.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guohua Lou ◽  
Aichun Li ◽  
Yelei Cen ◽  
Qin Yang ◽  
Tianbo Zhang ◽  
...  

Abstract Background Acute liver failure (ALF) is associated with a high mortality rate, and there are still no effective treatments except liver transplantation and artificial liver therapies. This study aimed to determine the effects, therapeutic window and mechanisms of selonsertib, a selective inhibitor of ASK1, for ALF therapy. Results Lipopolysaccharide and d-galactosamine (LPS/GalN) were used to simulate ALF. We found that selonsertib pretreatment significantly ameliorated ALF, as determined by reduced hepatic necrosis and serum alanine aminotransferase, aspartate aminotransferase and inflammatory cytokine levels. However, selonsertib is only effective early after LPS/GalN administration, and the limited therapeutic window is related to the activation and mitochondrial translocation of JNK and DRP1. Further experiments revealed that selonsertib could alleviate LPS-induced mitochondrial damage in macrophages by evaluating the mitochondrial membrane potential and mitochondrial permeability transition pore opening in macrophages. Selonsertib also suppressed the release of inflammatory cytokines from macrophages by reducing DRP1-mediated mitochondrial dysfunction, which was confirmed by using mdivi, a specific DRP1 inhibitor. Conclusions Selonsertib protected against LPS/GalN-induced ALF by attenuating JNK-mediated DRP1 mitochondrial translocation and then rescuing mitochondrial damage in macrophages and may have therapeutic potential for early ALF patients.


2020 ◽  
Author(s):  
Guohua Lou ◽  
Aichun Li ◽  
Tianbao Zhang ◽  
Jinjin Qi ◽  
Zhi Chen ◽  
...  

Abstract BackgroundAcute liver failure (ALF) is associated with high mortality rate and there are still no effective treatments expect liver transplantation and artificial liver therapies. This study was aimed to determine the effects, therapeutic window and mechanisms of selonsertib, a selective inhibitor of ASK1, for ALF therapy.ResultsLipopolysaccharide and D-galactosamine (LPS/GalN) was used to simulate ALF. We found that selonsertib pretreatment significantly ameliorated ALF as determined by reduced hepatic necrosis and serum alanine aminotransferase, aspartate aminotransferase and inflammatory cytokine levels. However, selonsertib is only effective early after LPS/GalN administration and the limited therapeutic window was related to the activation and mitochondrial translocation of JNK and DRP1. Further experiments revealed that selonsertib could alleviate LPS-induced mitochondrial damage in macrophages by evaluating the mitochondrial membrane potential and mitochondrial permeability transition pore opening in macrophages. Selonsertib also suppressed the release of inflammatory cytokines from macrophages by reducing DRP1-mediated mitochondrial dysfunction, which was confirmed by using mdivi, the specific DRP1 inhibitor.ConclusionsSelonsertib protected against LPS/GalN-induced ALF by attenuating JNK-mediated DRP1 mitochondrial translocation and then rescuing mitochondrial damage in macrophages and may have therapeutic potential for early ALF patients.


2002 ◽  
Vol 9 (17) ◽  
pp. 1605-1610 ◽  
Author(s):  
A. Cash ◽  
G. Perry ◽  
M. Smith

Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 609
Author(s):  
Nunzia Mollo ◽  
Matteo Esposito ◽  
Miriam Aurilia ◽  
Roberta Scognamiglio ◽  
Rossella Accarino ◽  
...  

Background: The presence of mitochondrial alterations in Down syndrome suggests that it might affect neuronal differentiation. We established a model of trisomic iPSCs, differentiating into neural precursor cells (NPCs) to monitor the occurrence of differentiation defects and mitochondrial dysfunction. Methods: Isogenic trisomic and euploid iPSCs were differentiated into NPCs in monolayer cultures using the dual-SMAD inhibition protocol. Expression of pluripotency and neural differentiation genes was assessed by qRT-PCR and immunofluorescence. Meta-analysis of expression data was performed on iPSCs. Mitochondrial Ca2+, reactive oxygen species (ROS) and ATP production were investigated using fluorescent probes. Oxygen consumption rate (OCR) was determined by Seahorse Analyzer. Results: NPCs at day 7 of induction uniformly expressed the differentiation markers PAX6, SOX2 and NESTIN but not the stemness marker OCT4. At day 21, trisomic NPCs expressed higher levels of typical glial differentiation genes. Expression profiles indicated that mitochondrial genes were dysregulated in trisomic iPSCs. Trisomic NPCs showed altered mitochondrial Ca2+, reduced OCR and ATP synthesis, and elevated ROS production. Conclusions: Human trisomic iPSCs can be rapidly and efficiently differentiated into NPC monolayers. The trisomic NPCs obtained exhibit greater glial-like differentiation potential than their euploid counterparts and manifest mitochondrial dysfunction as early as day 7 of neuronal differentiation.


2021 ◽  
Vol 22 (1) ◽  
pp. 424
Author(s):  
Vlad F. Avram ◽  
Imen Chamkha ◽  
Eleonor Åsander-Frostner ◽  
Johannes K. Ehinger ◽  
Romulus Z. Timar ◽  
...  

Statins are the cornerstone of lipid-lowering therapy. Although generally well tolerated, statin-associated muscle symptoms (SAMS) represent the main reason for treatment discontinuation. Mitochondrial dysfunction of complex I has been implicated in the pathophysiology of SAMS. The present study proposed to assess the concentration-dependent ex vivo effects of three statins on mitochondrial respiration in viable human platelets and to investigate whether a cell-permeable prodrug of succinate (complex II substrate) can compensate for statin-induced mitochondrial dysfunction. Mitochondrial respiration was assessed by high-resolution respirometry in human platelets, acutely exposed to statins in the presence/absence of the prodrug NV118. Statins concentration-dependently inhibited mitochondrial respiration in both intact and permeabilized cells. Further, statins caused an increase in non-ATP generating oxygen consumption (uncoupling), severely limiting the OXPHOS coupling efficiency, a measure of the ATP generating capacity. Cerivastatin (commercially withdrawn due to muscle toxicity) displayed a similar inhibitory capacity compared with the widely prescribed and tolerable atorvastatin, but did not elicit direct complex I inhibition. NV118 increased succinate-supported mitochondrial oxygen consumption in atorvastatin/cerivastatin-exposed platelets leading to normalization of coupled (ATP generating) respiration. The results acquired in isolated human platelets were validated in a limited set of experiments using atorvastatin in HepG2 cells, reinforcing the generalizability of the findings.


Author(s):  
Leila Sadeghi ◽  
◽  
Arezu Marefat ◽  

Introduction: Iron oxide nanoparticles (Fe2O3-NPs) are small magnetic particles that widely used in different aspects of biology and medicine in modern life. Fe2O3-NP accumulated in the living cells due to absence of active system to excrete the iron ions so damages cellular organelles by highly reactivity. Method: Herein cytotoxic effects of Fe2O3-NP with 50 nm size were investigated on primary culture of neonatal rat hippocampus by MTT assay. Pathophysiological signs of Alzheimer disease such as amyloid precursor protein (APP) expression, Aβ aggregation, soluble APPα and APPβ secretion also were investigated in hippocampal cells treated by various concentration of NP for different exposure time. Results: Our results revealed, Fe2O3-NP treatment causes oxidative stress in cells that accompanied by upregulation of the APP and Aβ in a concentration dependent manner. NP exposing also leads to more secretion of sAPPβ rather than sAPPα that concluded to increased activation of β-secretase in NP received cells. All of the harmful effects accumulate in neurons that could not be renovated so lead to neurodegeneration in Alzheimer disease. Conclusion: This study approved iron-based NPs could help to develop the Alzheimer and related neurological disorders and explained why some of the iron chelators have therapeutic potential in Alzheimer disease.


2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Estela Area-Gomez ◽  
Ad de Groof ◽  
Eduardo Bonilla ◽  
Jorge Montesinos ◽  
Kurenai Tanji ◽  
...  

Author(s):  
Ilya V. Rogachevskii ◽  
Vera B. Plakhova ◽  
Valentina A. Penniyaynen ◽  
Stanislav G. Terekhin ◽  
Svetlana A. Podzorova ◽  
...  

A gamma-pyrone derivative, comenic acid, activates the opioid-like receptor-mediated signaling pathway that modulates the NaV1.8 channels in the primary sensory neuron membrane. These channels are responsible for generation of the nociceptive signal; gamma-pyrones can therefore have a great therapeutic potential as analgesics, and this effect deserves a deeper understanding. The novelty of our approach to the design of a medicinal substance is based on a combination of the data obtained on living neurons using very sensitive physiological methods and the results of quantum-chemical calculations. This approach allows to correlate the molecular structure of gamma-pyrones with their ability to evoke a physiological response of the neuron. Comenic acid can bind two calcium cations. One of them is chelated by the carbonyl and the hydroxyl functional groups, while another one forms the salt bond with the carboxylate anion. Calcium-bound gamma-pyrones are fundamentally different in electrostatic properties from the free gamma-pyrone molecules. These two calcium ions are the key elements involved in ligand-receptor binding. It is very likely ion-ionic interactions between these cations and anionic functional groups of the opioid-like receptor that activate the latter. The calculated intercationic distance of 9.5 Å is a structural criterion for effective ligand-receptor binding of calcium-bound gamma-pyrones.


Sign in / Sign up

Export Citation Format

Share Document