scholarly journals Selonsertib, a potential drug for liver failure therapy by rescuing the mitochondrial dysfunction of macrophage via ASK1–JNK–DRP1 pathway

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guohua Lou ◽  
Aichun Li ◽  
Yelei Cen ◽  
Qin Yang ◽  
Tianbo Zhang ◽  
...  

Abstract Background Acute liver failure (ALF) is associated with a high mortality rate, and there are still no effective treatments except liver transplantation and artificial liver therapies. This study aimed to determine the effects, therapeutic window and mechanisms of selonsertib, a selective inhibitor of ASK1, for ALF therapy. Results Lipopolysaccharide and d-galactosamine (LPS/GalN) were used to simulate ALF. We found that selonsertib pretreatment significantly ameliorated ALF, as determined by reduced hepatic necrosis and serum alanine aminotransferase, aspartate aminotransferase and inflammatory cytokine levels. However, selonsertib is only effective early after LPS/GalN administration, and the limited therapeutic window is related to the activation and mitochondrial translocation of JNK and DRP1. Further experiments revealed that selonsertib could alleviate LPS-induced mitochondrial damage in macrophages by evaluating the mitochondrial membrane potential and mitochondrial permeability transition pore opening in macrophages. Selonsertib also suppressed the release of inflammatory cytokines from macrophages by reducing DRP1-mediated mitochondrial dysfunction, which was confirmed by using mdivi, a specific DRP1 inhibitor. Conclusions Selonsertib protected against LPS/GalN-induced ALF by attenuating JNK-mediated DRP1 mitochondrial translocation and then rescuing mitochondrial damage in macrophages and may have therapeutic potential for early ALF patients.

2020 ◽  
Author(s):  
Guohua Lou ◽  
Aichun Li ◽  
Tianbao Zhang ◽  
Jinjin Qi ◽  
Zhi Chen ◽  
...  

Abstract BackgroundAcute liver failure (ALF) is associated with high mortality rate and there are still no effective treatments expect liver transplantation and artificial liver therapies. This study was aimed to determine the effects, therapeutic window and mechanisms of selonsertib, a selective inhibitor of ASK1, for ALF therapy.ResultsLipopolysaccharide and D-galactosamine (LPS/GalN) was used to simulate ALF. We found that selonsertib pretreatment significantly ameliorated ALF as determined by reduced hepatic necrosis and serum alanine aminotransferase, aspartate aminotransferase and inflammatory cytokine levels. However, selonsertib is only effective early after LPS/GalN administration and the limited therapeutic window was related to the activation and mitochondrial translocation of JNK and DRP1. Further experiments revealed that selonsertib could alleviate LPS-induced mitochondrial damage in macrophages by evaluating the mitochondrial membrane potential and mitochondrial permeability transition pore opening in macrophages. Selonsertib also suppressed the release of inflammatory cytokines from macrophages by reducing DRP1-mediated mitochondrial dysfunction, which was confirmed by using mdivi, the specific DRP1 inhibitor.ConclusionsSelonsertib protected against LPS/GalN-induced ALF by attenuating JNK-mediated DRP1 mitochondrial translocation and then rescuing mitochondrial damage in macrophages and may have therapeutic potential for early ALF patients.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Sumeet S Vaikunth ◽  
Karl T Weber ◽  
Syamal K Bhattacharya

Introduction: Isoproterenol-induced acute stressor state simulates injury from burns or trauma, and results in Ca 2+ overloading and oxidative stress in diverse tissues, including cardiac myocytes and their subsarcolemmal mitochondria (SSM), overwhelming endogenous Zn 2+ -based antioxidant defenses. We hypothesized that pretreatment with nebivolol (Nebi), having dual beta-1 antagonistic and novel beta-3 receptor agonistic properties, would prevent Ca 2+ overloading and oxidative stress and upregulate Zn 2+ -based antioxidant defenses, thus enhancing its overall cardioprotective potential in acute stressor state. Methods: Eight-week-old male Sprague-Dawley rats received a single subcutaneous dose of isoproterenol (1 mg/kg) and compared to those treated with Nebi (10 mg/kg by gavage) for 10 days prior to isoproterenol. SSM were harvested from cardiac tissue at sacrifice. Total Ca 2+ , Zn 2+ and 8-isoprostane levels in tissue, and mitochondrial permeability transition pore (mPTP) opening, free [Ca 2+ ] m and H 2 O 2 production in SSM were monitored. Untreated, age-/sex-matched rats served as controls; each group had six rats and data shown as mean±SEM. Results: Compared to controls, isoproterenol rats revealed: (1) Significantly (*p<0.05) increased cardiac tissue Ca 2+ (8.2±0.8 vs. 13.7±1.0*, nEq/mg fat-free dry tissue (FFDT)), which was abrogated ( # p<0.05) by Nebi (8.9±0.4 # ); (2) Reduced cardiac Zn 2+ (82.8±2.4 vs. 78.5±1.0*, ng/mg FFDT), but restored by Nebi (82.4±0.6 # ); (3) Two-fold rise in cardiac 8-isoprostane (111.4±13.7 vs. 232.1±17.2*, pmoles/mg protein), and negated by Nebi (122.3+14.5 # ); (4) Greater opening propensity for mPTP that diminished by Nebi; (5) Elevated [Ca 2+ ] m (88.8±2.5 vs. 161.5±1.0*, nM), but normalized by Nebi (93.3±2.7 # ); and (6) Increased H 2 O 2 production by SSM (97.4±5.3 vs. 142.8±7.0*, pmoles/mg protein/min), and nullified by Nebi (106.8±9.0 # ). Conclusions : Cardioprotection conferred by Nebi, a unique beta-blocker, prevented Ca 2+ overloading and oxidative stress in cardiac tissue and SSM, while simultaneously augmenting antioxidant capacity and promoting mPTP stability. Therapeutic potential of Nebi in patients with acute stressor states remains a provocative possibility that deserves to be explored.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Giovanni Fajardo ◽  
Mingming Zhao ◽  
Gerald Berry ◽  
Daria Mochly-Rosen ◽  
Daniel Bernstein

β2-adrenergic receptors (β2-ARs) modulate cardioprotection through crosstalk with multiple pathways. We have previously shown that β2-ARs are cardioprotective during acute exposure to Doxorubicin (DOX). DOX cardiotoxicity is mediated through a Ca 2+ -dependent opening of the mitochondrial permeability transition pore (MPT) and mitochondrial dysfunction, however the upstream signals linking cell surface receptors and the MPT are not clear. The purpose of this study was to assess crosstalk between β2-AR signaling and mitochondrial function in DOX toxicity. DOX 10 mg/kg was administered to β2−/− and WT mice. Whereas there was no mortality in WT, 85% of β2−/− mice died within 30 min (n=20). Pro- and anti-survival kinases were assessed by immunobloting. At baseline, β2−/− showed normal levels of ϵPKC, but a 16% increase in δPKC compared to WT (p<0.05). After DOX, β2−/− showed a 64% decrease in ϵPKC (p<0.01) and 22% increase in δPKC (p<0.01). The ϵPKC activator ΨϵRACK decreased mortality by 40% in β2−/− mice receiving DOX; there was no improvement in survival with the δPKC inhibitor δV1–1. After DOX, AKT activity was decreased by 76% (p<0.01) in β2−/− but not in WT. The α1-AR blocker prazosin, inhibiting signaling through Gαq, restored AKT activity and reduced DOX mortality by 47%. We next assessed the role of mitochondrial dysfunction in β2−/− mediated DOX toxicity. DOX treated β2−/− mice, but not WT, show marked vacuolization of mitochondrial cristae. Complex I activity decreased 31% in β2−/− mice with DOX; but not in WT. Baseline rate of Ca2+ release and peak [Ca2+]i ratio were increased 85% and 17% respectively in β2−/− myocytes compared to WT. Verapamil decreased mortality by 27% in DOX treated β2−/− mice. Cyclosporine, a blocker of both MPT and calcineurin, reduced DOX mortality to 50%. In contrast, FK506, a blocker of calcineurin but not the MPT, did not reduce DOX mortality. Cyclosporine prevented the decrease in AKT activity in β2−/− whereas FK506 did not. These findings suggest that β2-ARs modulate pro-survival kinases and attenuate mitochondrial dysfunction during DOX cardiotoxicity; absence of β2-ARs enhances DOX toxicity via negative regulation of survival kinases and enhancement of intracellular Ca2+, sensitizing mitochondria to opening of the MPT.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Melissa N Quinsay ◽  
Shivaji Rikka ◽  
M Richard Sayen ◽  
Jeffery D Molkentin ◽  
Roberta A Gottlieb ◽  
...  

Bnip3 is a member of the BH3-only subfamily of pro-apoptotic Bcl-2 proteins and is associated with mitochondrial dysfunction and cell death in the myocardium. The pro-apoptotic Bcl-2 proteins mediate mitochondrial dysfunction independent of the mitochondrial permeability transition pore (mPTP). However, Bnip3 has been reported to mediate cell death via the mPTP. In this study, we investigated the mechanism(s) by which Bnip3 causes mitochondrial dysfunction. Using a mitochondrial swelling assay to assess pore opening, we found that addition of 200 microM Ca2+ to mitochondria isolated from rat hearts induced rapid swelling of mitochondria and release of cytochrome c (cyto c). Bnip3 also induced mitochondrial swelling and cyto c release, but always at a slower rate and to a greater degree, suggesting that Bnip3 mediates swelling via a different mechanism. Cyclosporin A (CsA), an inhibitor of mPTP opening, prevented Ca2+-induced swelling and cyto c release, but had no effect on Bnip3. Another BH3-only protein, tBid, caused release of cyto c but failed to induce swelling of mitochondria. Interestingly, Bnip3, but not Ca2+ and tBid, induced release of the matrix protein MnSOD. Cyclophilin D (cycD) is an essential component of the mPTP and heart mitochondria isolated from cycD−/− mice were resistant to Ca2+-, but not to Bnip3-induced swelling and cyto c release. Also, tBid caused cyto c release without mitochondrial swelling in the absence of cycD. To further explore the mPTP as a downstream effector of Bnip3-mediated cell death, we assessed cell death in mouse embryonic fibroblasts (MEFs) isolated from wild type (wt) and cycD−/− mice. Infection with an adenovirus expressing Bnip3 caused significant cell death in wt (52.8±1.8%) and cycD−/− (61.8±6.1%) MEFs as measured by LDH release. In addition, both Bnip3 and opening of the mPTP have been reported to initiate upregulation of autophagy. Monitoring of GFP-LC3 incorporation into autophagosomes by fluorescence microscopy revealed that Bnip3 infection induced autophagy in wt (86.5±6.6%) and cycD−/− (96.4±1.4%) MEFs (n=3, p<0.05). Thus, these studies suggest that Bnip3 mediates permeabilization of the inner and outer mitochondrial membranes via a novel mechanism that is different from other BH3-only proteins. This research has received full or partial funding support from the American Heart Association, AHA National Center.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1982 ◽  
Author(s):  
Guangxiang Luan ◽  
Gang Li ◽  
Xiao Ma ◽  
Youcai Jin ◽  
Na Hu ◽  
...  

Dexamethasone is a glucocorticoid analog, which is reported to induce insulin resistance and to exacerbate diabetic symptoms. In this study, we investigated the association between mitochondrial dysfunction and the pathophysiology of dexamethasone-induced insulin resistance. An insulin resistance model in 3T3-L1 adipocyte was established by 48-h treatment of 1 μM dexamethasone, followed with the detection of mitochondrial function. Results showed that dexamethasone impaired insulin-induced glucose uptake and caused mitochondrial dysfunction. Abnormality in mitochondrial function was supported by decreased intracellular ATP and mitochondrial membrane potential (MMP), increased intracellular and mitochondrial reactive oxygen species (ROS) and mtDNA damage. Mitochondrial dynamic changes and biogenesis were suggested by decreased Drp1, increased Mfn2, and decreased PGC-1, NRF1, and TFam, respectively. The mitochondrial DNA (mtDNA) copy number exhibited no change while the mitochondrial mass increased. In agreement, studies in isolated mitochondria from mouse liver also showed dexamethasone-induced reduction of mitochondrial respiratory function, as suggested by decreased mitochondrial respiration controlling rate (RCR), lower MMP, declined ATP synthesis, opening of the mitochondrial permeability transition pore (mPTP), damage of mtDNA, and the accumulation of ROS. In summary, our study suggests that mitochondrial dysfunction occurs along with dexamethasone-induced insulin resistance in 3T3 L1 adipocytes and might be a potential mechanism of dexamethasone-induced insulin resistance.


Drug Research ◽  
2019 ◽  
Vol 69 (11) ◽  
pp. 598-605 ◽  
Author(s):  
Ahmad Salimi ◽  
Mohammad Reza Neshat ◽  
Parvaneh Naserzadeh ◽  
Jalal Pourahmad

AbstractNonsteroidal anti-inflammatory drugs (NSAIDs) like naproxen, diclofenac and celecoxib used to reduce pain. Many of these drugs have been associated with an increased risk of cardiovascular disease (CVD). The molecular mechanism(s) by which NSAIDs induce CVD up to now is unknown. We investigated the effects of naproxen, diclofenac and celecoxib with different structures and mechanism action on isolated rat heart mitochondria. All tested NSAIDs increased reactive oxygen species (ROS) formation, mitochondrial membrane collapse (MMP), mitochondrial swelling, lipid peroxidation, and glutathione and ATP depletion, which all of them play important roles in developing cardiotoxicity. We reported that mitochondrial permeability transition (MPT) pore sealing agents and antioxidants have the capacity to significantly prevent mitochondrial toxicity. Therefore, the inhibition of mitochondrial oxidative stress and mitochondrial dysfunction by MPT pore sealing agents and antioxidants can double confirm NSAID-induced cardiomyocytes toxicity is resulted from induction of apoptosis signaling trough ROS-mediated mitochondrial permeability transition.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 649
Author(s):  
Kun Jia ◽  
Heng Du

Advanced age is the greatest risk factor for aging-related brain disorders including Alzheimer’s disease (AD). However, the detailed mechanisms that mechanistically link aging and AD remain elusive. In recent years, a mitochondrial hypothesis of brain aging and AD has been accentuated. Mitochondrial permeability transition pore (mPTP) is a mitochondrial response to intramitochondrial and intracellular stresses. mPTP overactivation has been implicated in mitochondrial dysfunction in aging and AD brains. This review summarizes the up-to-date progress in the study of mPTP in aging and AD and attempts to establish a link between brain aging and AD from a perspective of mPTP-mediated mitochondrial dysfunction.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Songfeng Chen ◽  
Qing Tian ◽  
Chunfeng Shang ◽  
Lin Yang ◽  
Na Wei ◽  
...  

We recently reported that necroptosis contributed to compression-induced nucleus pulposus (NP) cells death. In the current study, we investigated the regulative effect of necroptosis inhibitor Necrostatin-1 on NP cells apoptosis and autophagy. Necrostatin-1, autophagy inhibitor 3-Methyladenine and apoptosis inhibitor Z-VAD-FMK were employed, and NP cells were exposed to 1.0 MPa compression for 0, 24 and 36 h. Necroptosis-associated molecules were measured by Western blot and RT-PCR. Autophagy and apoptosis levels were evaluated by Western blot and quantified by flow cytometry after monodansylcadaverine and Annexin V-FITC/propidium iodide staining, respectively. The cell viability and cell death were also examined. Furthermore, we measured mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (MPTP) and indices of oxidative stress to assess mitochondrial dysfunction. The results established that Necrostatin-1 blocked NP cells autophagy, and 3-Methyladenine had little influence on NP cells necroptosis. The Necrostatin-1+3-Methyladenine treatment exerted almost the same role as Necrostatin-1 in reducing NP cells death. Necrostatin-1 restrained NP cells apoptosis, while Z-VAD-FMK enhanced NP cells necroptosis. The Necrostatin-1+Z-VAD-FMK treatment provided more prominent role in blocking NP cells death compared with Necrostatin-1, consistent with increased MMP, reduced opening of MPTP and oxidative stress. In summary, the synergistic utilization of Necrostatin-1 and Z-VAD-FMK is a very worthwhile solution in preventing compression-mediated NP cells death, which might be largely attributed to restored mitochondrial function.


2018 ◽  
Vol 315 (5) ◽  
pp. H1341-H1352 ◽  
Author(s):  
Giuseppe Paradies ◽  
Valeria Paradies ◽  
Francesca Maria Ruggiero ◽  
Giuseppe Petrosillo

Mitochondrial dysfunction plays a central role in myocardial ischemia-reperfusion (I/R) injury. Increased reactive oxygen species production, impaired electron transport chain activity, aberrant mitochondrial dynamics, Ca2+ overload, and opening of the mitochondrial permeability transition pore have been proposed as major contributory factors to mitochondrial dysfunction during myocardial I/R injury. Cardiolipin (CL), a mitochondria-specific phospholipid, plays a pivotal role in multiple mitochondrial bioenergetic processes, including respiration and energy conversion, in mitochondrial morphology and dynamics as well as in several steps of the apoptotic process. Changes in CL levels, species composition, and degree of oxidation may have deleterious consequences for mitochondrial function with important implications in a variety of pathophysiological conditions, including myocardial I/R injury. In this review, we focus on the role played by CL alterations in mitochondrial dysfunction in myocardial I/R injury. Pharmacological strategies to prevent myocardial injury during I/R targeting mitochondrial CL are also examined.


Sign in / Sign up

Export Citation Format

Share Document