scholarly journals Using of Microsilica for Strength Improvement of Fiber Reinforced Cementitious Surface Compounds

2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
S. S. Shebl ◽  
Ibrahim S. Khalil ◽  
H. Shoukry

This study represents an extension work to investigate the role of ultra fine sand (UFS) in enhancing the mechanical properties of fiber reinforced cementitious compounds. The micro-structural origins were identified by scanning electron microscope (SEM). About 50% of UFS had a diameter of less than 20 μm. Ordinary Portland Cement (OPC) was partially substituted by UFS at 3, 5, 7 and 10% by weight of binder. It was found that as UFS loadings increase, the flexural, compressive, and tensile strengths increased up to about 5% UFS loading by 12.9, 15.7 and 30.1%, respectively, thereafter, a decrease in these properties was observed. This can be attributed to the pozzolanic effect besides the filling effect of UFS resulting in enhancing the interfacial bonds between the sand grains and hydration products that makes the paste more homogeneous and dense. The effect of both short natural and artificial fiber loadings on the structural performance of compounds was also studied. Loadings of 2%, by weight, of short natural date palm leaves’ midribs fibers (DP) and artificial polypropylene fibers (PP) were added to the 5% UFS blended mix. An increase in both flexural and tensile strength was achieved, while a decrease in the compressive strength was observed.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3522
Author(s):  
Marta Caballero-Jorna ◽  
Marta Roig-Flores ◽  
Pedro Serna

The use of synthetic fibers in fiber-reinforced concretes (FRCs) is often avoided due to the mistrust of lower performance at changing temperatures. This work examines the effect of moderate temperatures on the flexural strengths of FRCs. Two types of polypropylene fibers were tested, and one steel fiber was employed as a reference. Three-point bending tests were carried out following an adapted methodology based on the standard EN 14651. This adapted procedure included an insulation system that allowed the assessment of FRC flexural behavior after being exposed for two months at temperatures of 5, 20, 35 and 50 °C. In addition, the interaction of temperature with a pre-cracked state was also analyzed. To do this, several specimens were pre-cracked to 0.5 mm after 28 days and conditioned in their respective temperature until testing. The findings suggest that this range of moderate temperatures did not degrade the behavior of FRCs to a great extent since the analysis of variances showed that temperature is not always a significant factor; however, it did have an influence on the pre-cracked specimens at 35 and 50 °C.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2476
Author(s):  
Haiwen Li ◽  
Sathwik S. Kasyap ◽  
Kostas Senetakis

The use of polypropylene fibers as a geosynthetic in infrastructures is a promising ground treatment method with applications in the enhancement of the bearing capacity of foundations, slope rehabilitation, strengthening of backfills, as well as the improvement of the seismic behavior of geo-systems. Despite the large number of studies published in the literature investigating the properties of fiber-reinforced soils, less attention has been given in the evaluation of the dynamic properties of these composites, especially in examining damping characteristics and the influence of fiber inclusion and content. In the present study, the effect of polypropylene fiber inclusion on the small-strain damping ratio of sands with different gradations and various particle shapes was investigated through resonant column (macroscopic) experiments. The macroscopic test results suggested that the damping ratio of the mixtures tended to increase with increasing fiber content. Accordingly, a new expression was proposed which considers the influence of fiber content in the estimation of the small-strain damping of polypropylene fiber-sand mixtures and it can be complementary of damping modeling from small-to-medium strains based on previously developed expressions in the regime of medium strains. Additional insights were attempted to be obtained on the energy dissipation and contribution of fibers of these composite materials by performing grain-scale tests which further supported the macroscopic experimental test results. It was also attempted to interpret, based on the grain-scale tests results, the influence of fiber inclusion in a wide spectrum of properties for fiber-reinforced sands providing some general inferences on the contribution of polypropylene fibers on the constitutive behavior of granular materials.


2018 ◽  
Vol 29 (0) ◽  
pp. 41-54
Author(s):  
Ryohei Yanagida ◽  
Takuro Nakamura ◽  
Katsuya Kono ◽  
Junichiro Niwa

PROTOPLASMA ◽  
1992 ◽  
Vol 166 (3-4) ◽  
pp. 177-186 ◽  
Author(s):  
Darleen A. DeMason ◽  
Monica A. Madore ◽  
K. N. Chandra Sekhar ◽  
Marilyn J. Harris

Author(s):  
Abdul Gani Akhmad

This study aims to evaluate the performance of a pilot-scale HSSF-CW utilizing Typha angustifolia and fine sand-gravel media in removing total coliform and TSS from hospital wastewater. Three pilot-scale HSSF-CW cells measuring 1.00 x 0.45 x 0.35 m3 were filled with gravel sand media with a diameter of 5 - 8 mm as high as 35 cm with a submerged media depth of 0.30 m. There were three treatments, namely the first cell (CW1) without plants, the second cell (CW2) was planted with a density of 12 Typha angustifolia plants, and the third cell (CW3) was planted with a density of 24 Typha angustifolia plants. The three HSSF-CW cells received the same wastewater load with total coliform and TSS contents of 91000 MPN / 100 mg and 53 mg / L, respectively, with Hydraulic Loading Rates 3,375 m3 per day. Wastewater was recirculated continuously to achieve the equivalent HSSF-CW area requirement. The experimental results show that the performance of CW3 is more efficient than CW1 and CW2 in total coliform and TSS removal for hospital wastewater. The pollutant removal efficiency at CW3 reached 91.76% for total coliform with one day hydraulic retention time and 81.00% for TSS with two days of hydraulic retention time. This study concludes that the HSSF-CW system using sand-gravel media with a diameter of 5 - 8 mm with a submerged media depth of 0.30 m and planted with Typha angustifolia with a tighter spacing proved to be more efficient in removing total coliform and TSS from hospital wastewater.


Sign in / Sign up

Export Citation Format

Share Document