Cosmic rays at ground level; a brief introduction

Author(s):  
Du Toit Strauss

<p>Galactic cosmic rays, and sporadic high energy solar energetic particles, are energetic enough to pierce the Earth’s protective magnetosphere and interact with the atmosphere. Here, a secondary particle cascade leads to enhanced radiation levels which is of importance, for instance, to aviation dosimetry and related studies. At ground level, these secondary particles can be observed (indirectly) by means of neutron monitors, and this has been done for more than 70 years, providing a valuable long-term cosmic ray record. In this talk, we introduce the different primary particle populations, discuss their acceleration and modulation, and connect this with long-term neutron monitor measurements.</p>

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Alexander Mishev

The galactic cosmic rays are the main source of ionization in the troposphere of the Earth. Solar energetic particles of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps. The ionization effect during the major ground level enhancement 69 on January 20, 2005 is studied at various time scales. The estimation of ion rate is based on a recent numerical model for cosmic-ray-induced ionization. The ionization effect in the Earth atmosphere is obtained on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic-ray-induced atmospheric cascade. The evolution of atmospheric cascade is performed with CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron interaction models. The atmospheric ion rate is explicitly obtained for various latitudes, namely, 40°N, 60°N and 80°N. The time evolution of obtained ion rates is presented. The short- and medium-term ionization effect is compared with the average effect due to galactic cosmic rays. It is demonstrated that ionization effect is significant only in subpolar and polar atmosphere during the major ground level enhancement of January 20, 2005. It is negative in troposphere at midlatitude, because of the accompanying Forbush effect.


Author(s):  
Liudmila Trefilova ◽  
Pavel G. Kobelev ◽  
Anatoly V. Belov ◽  
Eugenia A. Eroshenko ◽  
Anaid A. Melkumyan ◽  
...  

In May 2019 there was a long and sloping decreasing of cosmic ray’s intensity (up to ~4%), which was observed on neutron monitors. Despite this was a small decreasing compared to quasi-eleven-period variation, it stands out well in 24th cycle of solar activity. According to LASCO/SOHO and STEREO-A data from spectrometer in different UHF bands and from coronograph, there was a series of CMEs which affected on modulation of cosmic rays by creating a series of Forbush decrea - sing, which didn’t restore. This series was connected to two active regions on sun and began on April 30 from “reversed halo” CME. This CME didn’t reach the earth, but led to significant additional modulation of cosmic rays, mostly on east side. Later there was a series of smaller CMEs on May 1-6, which also didn’t reach the earth, but were gradually approaching to Earth. Recent CMEs on 8-9 and 12-13 created a normal Forbush decreasing. In May 2019, cosmic rays shown again, that they can collect information about distant objects of geliosphere and transmit it to Earth. The ground-level detectors sometimes can observe an interaction of interplanetary distur- bances, which didn‘t reach the earth. East CMEs are especially effective, because they closing magnetic field lines beyond the orbit of earth and can interfere the restoring of cosmic ray’s intensity.


2021 ◽  
Author(s):  
Jannis Weimar ◽  
Paul Schattan ◽  
Martin Schrön ◽  
Markus Köhli ◽  
Rebecca Gugerli ◽  
...  

<p><span>Secondary cosmic-ray neutrons may be effectively used as a proxy for environmental hydrogen content at the hectare scale. These neutrons are generated mostly in the upper layers of the atmosphere within particle showers induced by galactic cosmic rays and other secondary particles. Below 15 km altitude their intensity declines as primary cosmic rays become less abundant and the generated neutrons are attenuated by the atmospheric air. At the earth surface, the intensity of secondary cosmic-ray neutrons heavily depends on their attenuation within the atmosphere, i.e. the amount of air the neutrons and their precursors pass through. Local atmospheric pressure measurements present an effective means to account for the varying neutron attenuation potential of the atmospheric air column above the neutron sensor. Pressure variations possess the second largest impact on the above-ground epithermal neutron intensity. Thus, using epithermal neutrons to infer environmental hydrogen content requires precise knowledge on how to correct for atmospheric pressure changes.</span></p><p><span>We conducted several short-term field experiments in saturated environments and at different altitudes, i.e. different pressure states to observe the neutron intensity pressure relation over a wide range of pressure values. Moreover, we used long-term measurements above glaciers in order to monitor the local dependence of neutron intensities and pressure in a pressure range typically found in Cosmic-Ray Neutron Sensing. The results are presented along with a broad Monte Carlo simulation campaign using MCNP 6. In these simulations, primary cosmic rays are released above the earth atmosphere at different cut-off rigidities capturing the whole evolution of cosmic-ray neutrons from generation to attenuation and annihilation. The simulated and experimentally derived pressure relation of cosmic-ray neutrons is compared to those of similar studies and assessed in the light of an appropriate atmospheric pressure correction for Cosmic-Ray Neutron Sensing.</span></p>


1971 ◽  
Vol 2 ◽  
pp. 740-756
Author(s):  
Maurice M. Shapiro

The ‘Galactic’ cosmic rays impinging on the Earth come from afar over tortuous paths, traveling for millions of years. These particles are the only known samples of matter that reach us from regions of space beyond the solar system. Their chemical and isotopic composition and their energy spectra provide clues to the nature of cosmic-ray sources, the properties of interstellar space, and the dynamics of the Galaxy. Various processes in high-energy astrophysics could be illuminated by a more complete understanding of the arriving cosmic rays, including the electrons and gamma rays.En route, some of theprimordialcosmic-ray nuclei have been transformed by collision with interstellar matter, and the composition is substantially modified by these collisions. A dramatic consequence of the transformations is the presence in the arriving ‘beam’ of considerable fluxes of purely secondary elements (Li, Be, B), i.e., species that are, in all probability, essentially absent at the sources. We shall here discuss mainly the composition of the arriving ‘heavy’ nuclei -those heavier than helium - and what they teach us about thesourcecomposition, the galactic confinement of the particles, their path lengths, and their transit times.


2008 ◽  
Vol 4 (S257) ◽  
pp. 471-473
Author(s):  
M. Buchvarova ◽  
P. Velinov

AbstractOur model generalizes the differential D(E) and integral D(>E) spectra of cosmic rays (CR) during the 11-year solar cycle. The empirical model takes into account galactic (GCR) and anomalous cosmic rays (ACR) heliospheric modulation by four coefficients. The calculated integral spectra in the outer planets are on the basis of mean gradients: for GCR – 3%/AU and 7%/AU for anomalous protons. The obtained integral proton spectra are compared with experimental data, the CRÈME96 model for the Earth and theoretical results of 2D stochastic model. The proposed analytical model gives practical possibility for investigation of experimental data from measurements of galactic cosmic rays and their anomalous component.


Galaxies ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 48 ◽  
Author(s):  
Peter L. Biermann ◽  
Philipp P. Kronberg ◽  
Michael L. Allen ◽  
Athina Meli ◽  
Eun-Suk Seo

We propose that the high energy Cosmic Ray particles up to the upturn commonly called the ankle, from around the spectral turn-down commonly called the knee, mostly come from Blue Supergiant star explosions. At the upturn, i.e., the ankle, Cosmic Rays probably switch to another source class, most likely extragalactic sources. To show this we recently compiled a set of Radio Supernova data where we compute the magnetic field, shock speed and shock radius. This list included both Blue and Red Supergiant star explosions; both data show the same magnetic field strength for these two classes of stars despite very different wind densities and velocities. Using particle acceleration theory at shocks, those numbers can be transformed into characteristic ankle and knee energies. Without adjusting any free parameters both of these observed energies are directly indicated by the supernova data. In the next step in the argument, we use the Supernova Remnant data of the starburst galaxy M82. We apply this analysis to Blue Supergiant star explosions: The shock will race to their outer edge with a magnetic field that is observed to follow over several orders of magnitude B ( r ) × r ∼ c o n s t . , with in fact the same magnetic field strength for such stellar explosions in our Galaxy, and other galaxies including M82. The speed is observed to be ∼0.1 c out to about 10 16 cm radius in the plasma wind. The Supernova shock can run through the entire magnetic plasma wind region at full speed all the way out to the wind-shell, which is of order parsec scale in M82. We compare and identify the Cosmic Ray spectrum in other galaxies, in the starburst galaxy M82 and in our Galaxy with each other; we suggest how Blue Supergiant star explosions can provide the Cosmic Ray particles across the knee and up to the ankle energy range. The data from the ISS-CREAM (Cosmic Ray Energetics and Mass Experiment at the International Space Station) mission will test this cosmic ray concept which is reasonably well grounded in two independent radio supernova data sets. The next step in developing our understanding will be to obtain future more accurate Cosmic Ray data near to the knee, and to use unstable isotopes of Cosmic Ray nuclei at high energy to probe the “piston” driving the explosion. We plan to incorporate these data with the physics of the budding black hole which is probably forming in each of these stars.


2019 ◽  
Author(s):  
Thomas Honig ◽  
Olivier G. Witasse ◽  
Hugh Evans ◽  
Petteri Nieminen ◽  
Erik Kuulkers ◽  
...  

Abstract. The radiation data collected by the Standard Radiation Environment Monitor (SREM) aboard ESA missions INTEGRAl, ROSETTA, HERSCHEL, PLANCK and PROBA-1, and by the High Energy Neutron Detector (HEND) instrument aboard Mars Odyssey are analysed with an emphasis on characterising Galactic Cosmic Rays (GCRs) in the inner heliosphere. A cross-calibration between all sensors was performed for this study, which can also be used in subsequent works. We investigate the stability of the SREM detectors over long-term periods. The radiation data is compared qualitatively and quantitatively with the corresponding solar activity. Based on INTEGRAL and Rosetta SREM data, a GCR helioradial gradient of 2.96 %/AU is found between 1 and 4.5 AU. In addition, the data during the last phase of the Rosetta mission around comet 67P/Churyumov-Gerasimenko were studied in more detail. An unexpected and yet unexplained 8 % reduction of the Galactic Comic Ray flux measured by Rosetta SREM in the vicinity of the comet is noted.


Author(s):  
И. Ушаков ◽  
I. Ushakov ◽  
М. Васин ◽  
M. Vasin

Radiation situation for cosmonauts over long-term cosmic flights is caused by low-rate radiation of galactic cosmic rays and solar cosmic rays consisting of high-energy proton as well as heavy particles (Z>10) within 1-2 % that is exclusively a threat of stochastic radiation effects (small increase of cancer risk and decrease of mean life span) for men. During interplanetary expedition periods the small probability of raised solar activity there is a threat of exposure to astronauts at doses that cause deterministic radiation effects leading to the development of the disease as a clinical manifestation of radiation injuries,. In a similar scenario it is necessary to have available to cosmic ship anti-radiation countermeasures for cosmonaut protection. Among radioprotective equipment can be provided with radiation protective agents and partial shielding of body separate section providing the best condition for post-radiation repair of radiosensitive body tissues. Preparation B-190 (indralin) is the most perspective from a small numbers of other radioprotectors permitting for men administration. Besides high radioprotective efficacy and large broadness of protective action B-190 is well tolerated including the impact of extrem flight factors. Antiemetic agent latran (ondansetron) is most interesting among preparation for prophylaxis and reduction of prodromal radiation reaction. To accelerate post-radiation hematopoietic recovery after raised solar activity an administration of radiomitigators (riboxin et al.) is substantiated. Neupomax (neupogen) is recommended as a preparation for pathogenesis therapy of acute radiation syndrome. Possible consequences of long-term cosmic voyages for oxidative stress development are taken into consideration. On their basis of nNatural antioxidants, preparations and nutrients radiomodulators, fully qualitative nutrition including vegetable food enriched flavonoids, vitamins C, E and carotene potentially prevent a shorten of cosmonaut biological age induced by solar cosmic rays and galactic cosmic rays and stress factors of long-term cosmic voyages. Radiomodulators are low and non-toxic and have not side effects in recommended doses. Their radioprotective effect is directly induced by adaption reaction on cellular and organismic levels through gene expression modulation and in that way the increase of non-specific body tolerance. The implementation of radiomodulator action is possible through hormesis mechanism.


2017 ◽  
Vol 13 (S335) ◽  
pp. 69-74
Author(s):  
A. Dal Lago ◽  
C. R. Braga ◽  
R. R. S. de Mendonca ◽  
M. Rockenbach ◽  
E. Echer ◽  
...  

AbstractThe Global Muon Detector Network (GMDN) is composed by four ground cosmic ray detectors distributed around the Earth: Nagoya (Japan), Hobart (Australia), Sao Martinho da Serra (Brazil) and Kuwait city (Kuwait). The network has operated since March 2006. It has been upgraded a few times, increasing its detection area. Each detector is sensitive to muons produced by the interactions of ~50 GeV Galactic Cosmic Rays (GCR) with the Earth′s atmosphere. At these energies, GCR are known to be affected by interplanetary disturbances in the vicinity of the earth. Of special interest are the interplanetary counterparts of coronal mass ejections (ICMEs) and their driven shocks because they are known to be the main origins of geomagnetic storms. It has been observed that these ICMEs produce changes in the cosmic ray gradient, which can be measured by GMDN observations. In terms of applications for space weather, some attempts have been made to use GMDN for forecasting ICME arrival at the earth with lead times of the order of few hours. Scientific space weather studies benefit the most from the GMDN network. As an example, studies have been able to determine ICME orientation at the earth using cosmic ray gradient. Such determinations are of crucial importance for southward interplanetary magnetic field estimates, as well as ICME rotation.


2015 ◽  
Vol 93 (1) ◽  
pp. 100-104 ◽  
Author(s):  
Kingsley Chukwudi Okpala ◽  
Francisca Nneka Okeke ◽  
Anselem Ikechukwu Ugwuoke

Galactic cosmic rays are modulated in the heliosphere primarily by the global merged interaction regions with intense magnetic fields, which leads to a decrease in galactic cosmic rays throughout the heliosphere. Using long-term averages of solar wind (SW) component parameters in addition to cosmic ray count rates of four neutron monitors with different rigidity cutoffs, we analyzed the effect of these SW components on the count rates under different interplanetary magnetic field (IMF) disturbance levels. From first-order partial correlation, we found that the IMF-B was the most dominant modulating parameter, especially during quiet conditions and the SW dynamic pressure was more effective during disturbed conditions. The influence of more subtle parameters like wind speed, Bz component, and proton density were masked by these dominant parameters: IMF total B, and SW dynamic pressure.


Sign in / Sign up

Export Citation Format

Share Document